靠谱电子书 > 文学名著电子书 > 世界上卓越的23位数学家 >

第6部分

世界上卓越的23位数学家-第6部分

小说: 世界上卓越的23位数学家 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



的书籍,从数论直到天文学方面。根据拉格朗日的建议,他进行了多面体的研究,并于1811年到1812年向科学院提交了两篇论文,其中主要成果是:
(1)证明了凸正多面体只有五种(面数分别是4,6,8,12,20),星形正多面体只有四种(面数是12的三种,面数是20的一种)。
(2)得到了欧拉关于多面体的顶点、面和棱的个数关系式的另一证明并加以推广。
(3)证明了各面固定的多面体必然是固定的,从此可导出从未证明过的欧几里得的一个定理。
相关链接
单复变函数方面的贡献
柯西最重要和最有首创性的工作是关于单复变函数论的。18世纪的数学家们采用过上、下限是虚数的定积分。但没有给出明确的定义。柯西首先阐明了有关概念,并且用这种积分来研究多种多样的问题,如实定积分的计算,级数与无穷乘积的展开,用含参变量的积分表示微分方程的解等等。
他在数学中其他贡献如下:
1。分析方面:在一阶偏微分方程论中行进了特征线的基本概念;认识到傅立叶变换在解微分方程中的作用等等。
2。几何方面:开创了积分几何,得到了把平面凸曲线的长用它在平面直线上一些正交投影表示出来的公式。
3.代数方面:首先证明了阶数超过了的矩阵有特征值;同时发现两行列式相乘的公式,首先明确提出置换群概念,并得到群论中的一些非平凡的结果;独立发现了所谓“代数要领”,即格拉斯曼的外代数原理。
这两篇论文在数学界造成了极大的影响。柯西在瑟堡由于工作劳累生病,于1812年回到巴黎他的父母家中休养。
柯西于1813年在巴黎被任命为运河工程的工程师,他在巴黎休养和担任工程师期间,继续潜心研究数学并且参加学术活动。这一时期他的主要贡献是:
(1)研究代换理论,发表了代换理论和群论在历史上的基本论文。
(2)证明了费马关于多角形数的猜测,即任何正整数是个角形数的和。这一猜测当时已提出了一百多年,经过许多数学家研究,都没有能够解决。
以上两项研究是柯西在瑟堡时开始进行的。
(3)用复变函数的积分计算实积分,这是复变函数论中柯西积分定理的出发点。
(4)研究液体表面波的传播问题,得到流体力学中的一些经典结果,于1815年获得法国科学院数学大奖。
以上突出成果的发表给柯西带来了很高的声誉,他成为当时一位国际上著名的青年数学家。
1815年法国拿破仑失败,波旁王朝复辟,路易十八当上了法王。柯西于1816年先后被任命为法国科学院院士和综合工科学校教授。1821年又被任命为巴黎大学力学教授,还曾在法兰西学院授课。这一时期他的主要贡献是:
(1)在综合工科学校讲授分析课程,建立了微积分的基础极限理论,还阐明了极限理论。在此以前,微积分和级数的概念是模糊不清的。由于柯西的讲法与传统方式不同,当时学校师生对他提出了许多非议。
柯西在这一时期出版的著作有《代数分析教程》、《无穷小分析教程概要》和《微积分在几何中应用教程》。这些工作为微积分奠定了基础,促进了数学的发展,成为数学教程的典范。
(2)柯西在担任巴黎大学力学教授后,重新研究连续介质力学。在1822年的一篇论文中,他建立了弹性理论的基础。
(3)继续研究复平面上的积分及留数计算,并应用有关结果研究数学物理中的偏微分方程等。
他的大量论文分别在法国科学院论文集和他自己编写的期刊“数学习题”上发表。
1830年法国爆发了推翻波旁王朝的革命,法王查理第十仓皇逃走,奥尔良公爵路易·菲利浦继任法王。当时规定在法国担任公职必须宣誓对新法王效忠,由于柯西属于拥护波旁王朝的正统派,他拒绝宣誓效忠,并自行离开法国。他先到瑞士,后于1832…1833年任意大利都灵大学数学物理教授,并参加当地科学院的学术活动。那时他研究了复变函数的级数展开和微分方程(强级数法),并为此做出重要贡献。
1833…1838年柯西先在布拉格、后在戈尔兹担任波旁王朝“王储”波尔多公爵的教师,最后被授予“男爵”封号。在此期间,他的研究工作进行得较少。
1838年柯西回到巴黎。由于他没有宣誓对法王效忠,只能参加科学院的学术活动,不能担任教学工作。他在创办不久的法国科学院报告“和他自己编写的期刊分析及数学物理习题”上发表了关于复变函数、天体力学、弹性力学等方面的大批重要论文。
——传世佳言——
人总是要死的,但是,他们的业绩永存。
1848年法国又爆发了革命,路易·菲利浦倒台,重新建立了共和国,废除了公职人员对法王效忠的宣誓。柯西于1848年担任了巴黎大学数理天文学教授,重新进行他在法国高等学校中断了18年的教学工作。
1852年拿破仑第三发动政变,法国从共和国变成了帝国,恢复了公职人员对新政权的效忠宣誓,柯西立即向巴黎大学辞职。后来拿破仑第三特准免除他和物理学家阿拉果的忠诚宣誓。于是柯西得以继续进行所担任的教学工作,直到1857年他在巴黎近郊逝世时为止。柯西直到逝世前仍不断参加学术活动,不断发表科学论文。
 



第12章 李善兰


姓名:李善兰
出生地:浙江省海宁县硖石镇人
生卒年:公元1811…1882年
历史评价lishipingjia
李善兰是清代著名的数学家、天文学家、翻译家和教育家,我国近代科学的先驱者。
李善兰自幼酷爱数学。十岁时学习《九章算术》。十五岁时读明末徐光启、利玛窦合译的欧几里得《几何原本》前六卷,尽解其意。后来,他到杭州应试,买回元代李冶的《测圆海镜》、清代戴震的《勾股割圆记》等算书,认真研读;又在嘉兴等地与数学家顾观光、张文虎、汪曰桢以及戴煦、罗士琳、徐有壬等人相识,经常在学术上相互切磋。自此数学造诣日臻精深,时有心得,辄复著书,1845年前后就得到并发表了具有解析几何思想和微积分方法的数学研究成果——“尖锥术”。
1852…1859年,李善兰在上海墨海书馆与英国传教士、汉学家伟烈亚力等人合作翻译出版了《几何原本》后九卷,以及《代数学》、《代微积拾级》、《谈天》、《重学》、《圆锥曲线说》、《植物学》等西方近代科学著作,又译《奈端数理》(即牛顿《自然哲学的数学原理》)四册(未刊),这是解析几何、微积分、哥白尼日心说、牛顿力学、近代植物学传入中国的开端。李善兰的翻译工作是有独创性的,他创译了许多科学名词,如“代数”、“函数”、“方程式”、“微分”、“积分”、“级数”、“植物”、“细胞”等,匠心独运,贴切恰当,不仅在中国流传,而且东渡日本,沿用至今。李善兰为近代科学在中国的传播和发展做出了开创性的贡献。
1860年起,他先后在徐有壬、曾国藩军中做幕僚,与化学家徐寿、数学家华蘅芳等人一起,积极参与洋务运动中的科技学术活动。1867年他在南京出版《则古昔斋算学》,汇集了二十多年来在数学、天文学和弹道学等方面的著作,计有《方圆阐幽》、《弧矢启秘》、《对数探源》、《垛积比类》、《四元解》、《麟德术解》、《椭圆正术解》、《椭圆新术》、《椭圆拾遗》、《火器真诀》、《对数尖锥变法释》、《级数回求》和《天算或问》等13种24卷,共约15万字。
1868年,李善兰被荐任北京同文馆天文算学总教习,直至1882年他逝世为止,从事数学教育十余年,其间审定了《同文馆算学课艺》等数学教材,培养了一大批数学人才,是中国近代数学教育的鼻祖。
相关链接
李善兰的诗
15岁时,李善兰做诗的水平也大有提高,如:
膝下依依十五秋,光阴瞬息去难留,
嗟余马齿徒加长,爆竹惊心岁已周。
再如:
数声爆竹岁朝天,惭愧平与会讲年,
一岁功程今日始,急需早著祖生鞭。
都是写得很好的佳句。他年轻时写的《夏日田园杂兴》和《田家》等诗,
如:
提筐去采陌头桑,闭户看桑月夜忙,
得到丝成空费力,一身仍是布衣裳。
颇为同情劳动人民的辛苦。
李善兰生性落拓,潜心科学,淡于利禄。晚年官至三品,授户部正郎、广东司行走、总理各国事务衙门章京等职,但他从来没有离开过同文馆教学岗位,也没有中断过科学研究特别是数学研究工作。他的数学著作,除《则古昔斋算学》外,尚有《考数根法》、《粟布演草》、《测圆海镜解》、《九容图表》,而未刊行者,有《造整数勾股级数法》、《开方古义》、《群经算学考》、《代数难题解》等。
李善兰在数学研究方面的成就,主要有尖锥术、垛积术和素数论三项。尖锥术理论主要见于《方圆阐幽》、《弧矢启秘》、《对数探源》三种著作,成书年代约为1845年,当时解析几何与微积分学尚未传入中国。李善兰创立的“尖锥”概念,是一种处理代数问题的几何模型,他对“尖锥曲线”的描述实质上相当于给出了直线、抛物线、立方抛物线等方程。他创造的“尖锥求积术”,相当于幂函数的定积分公式和逐项积分法则。他用“分离元数法”独立地得出了二项平方根的幂级数展开式。结合“尖锥求积术”,得到了无穷级数表达式。
各种三角函数和反三角函数的展开式,以及对数函数的展开式在使用微积分方法处理数学问题方面取得了创造性的成就。垛积术理论主要见于《垛积比类》,写于1859…1867年间,这是有关高阶等差级数的著作。李善兰从研究中国传统的垛积问题入手,获得了一些相当于现代组合数学中的成果。例如,“三角垛有积求高开方廉隅表”和“乘方垛各廉表”实质上就是组合数学中著名的第一种斯特林数和欧拉数。驰名中外的“李善兰恒等式”自20世纪30年代以来,受到国际数学界的普遍关注和赞赏。可以认为,《垛积比类》是早期组合论的杰作。
素数论主要见于《考数根法》,发表于1872年,这是中国素数论方面最早的著作。在判别一个自然数是否为素数时,李善兰证明了著名的费马素数定理,并指出了它的逆定理不真。
1882年2月19日,逝世于北京四牌楼什锦花园胡同,享年72岁。逝世前,他还手著《级数勾股》2卷。
——传世佳言——
凡式中含天,为天之函数。
小学略通书数,大隐不在山林。
 



第13章 伽罗华


姓名:伽罗华
出生地:法国巴黎
生卒年:1811…1832年
历史评价lishipingjia
伽罗华是法国对函数论、方程式论和数论做出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础。
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
相关链接
数学世界的顽强斗士
1829年,伽罗华在他中学最后一年快要结束时,把关于群论初步研究结果的论文提交给法国科学院,科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人。在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会。
1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了,以参加科学院的数学大奖评选,希望能够获奖。论文寄给当时科学院终身秘书傅立叶,但傅立叶在当年5月去世了,在他的遗物中未能发现伽罗华的手稿。就这样,伽罗华递交的两次数学论文都被遗失了。
1831年1月,伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院。这篇论文是伽罗华关于群论的重要著作,当时负责审查的数学家理解这篇论文绞尽了脑汁。传说泊阿松将这篇论文看了四个月,最后结论居然是“完全不能理解”。尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它。但伽罗华没有放弃对数学的研究。
1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出“群”的概念,用群论改变了整个数学的面貌。1829年5月,18岁的伽罗华将自己关于群论的研究写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的