科学史及与哲学和宗教的关系 作-第77部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
在1939-45的战争期间,美英两国的物理学家、化学家与工程师,群策群力,共同合作,在制造原子弹方面和德国人展开了生死攸关的竞赛,并且在这一竞赛中取得了胜利。庞大而复杂的原子工厂在美国一个空旷地区建立起来,1945年投在日本的两颗原子弹结束了战争。留给各国政治家的工作便是控制核能的使用,以期使它为人类造福而不是造祸。我们面前摆着可怕的危险,也许核能的威力会使各国恐惧,从而迫使各国走上和平的道路。战争的消除当是科学的最大胜利。
同时原子研究的和平应用,已经为戴尔爵士等人所开始了。一个最显著的例子便是所谓“示踪元素”的使用。靠观测这类元素的性质,可以查明它们存在与运动的踪迹,其中最好的也许是某些放射物质。现今已有数量多得多的同位素作为原子堆的副产物,供入使用,因此在近年内示踪元素的应用发展异常迅速。放射原子可以混合在有机物内,作为动物的饲料,这样食物在体内的运动,可以用盖格-弥勒计数器去追踪它。我们可以不夸大地说,放射性示踪元素为生物物理学与生物化学打开了一个完全新颖的领域,且给予医疗界一个新的诊断法。
还有,放射物质的大量生产已经使放射治疗变得更容易、更便宜了,例如用以毁灭癌性组织。
还可以把示踪剂混在肥料里,靠估计农作物内的放射性,来测量肥料在农业生产上的效果。总之,示踪元素用途之广,差不多可以说是无限的。
物理理论的新发展,通常总是使人们要找到描述现象的数学方程式,比从物理学上加以解释,要容易。例如海森堡与薛定谔的量子力学,通过解决简单的例子建立起普遍的数学公式,后来才提出一些物理学的解释,例如状态的叠加和测不准原理,也导致了一种满意的非相对论的量子论。
要使量子论成为相对论性的,狄拉克也觉得解决数学方面的问题很容易,可是在解释上却有困难。他的解释最好用初始的与过渡的机遇来表示。这样,物理学如往常一样,仍然停留在概率演算的领域。
爱丁顿在我们所期待的物理学的新综合方面,取得一些进展。由于他把物理常数,如质子与电子的质量以及它们的电荷等等的理论数值与观测的数值加以比较,而得到很显著的符合,他成功地把万有引力、电力和量子论联系起来。关于现代物理学这方面的问题,可参看弗伦克尔(J.Frenkel)的一篇综合叙述。
化学
化学变化的动力学,在现代是一个不断研究的主题。阿累利乌斯首先提出:在一定量的物质里,只有一定数目的分子参与化学变化,而且这数目是随温度而增加的。这一理论现在看来是可疑的。现在人们以为这些分子,是由于“碰撞”,才变得运动迅速,从而起活化作用,就是在单分子的反应中也是如此。
氨与硝酸盐是农业肥料所需要的。硝酸盐也是制造开矿用的炸药和军用炸药所必需的。有一个时期,大家害怕(特别是克鲁克斯)智利的硝酸盐矿用完后,化学肥料会变得不足,世界小麦的供应也会变得不足。我们看见只有在战争时期才发生过这个现象。在正常和平时期是没有这个现象的。植物育种者已经培养出小麦的变种,可以适应北方的寒冷区域,因而扩大了种植面积,化学家也用合成方法制出了氨与硝酸盐。
卡文迪什曾将电火花在空气里通过,而得到酸。一百年后挪威的伯克兰(Birkeland)与艾德(Eyde)把这一方法加以大规模的发展。奈恩斯特(Nernst)与约斯特(Jost),继后,哈伯(Haber)与勒·罗西诺尔(Le Rossignol)研究了氨、氮和氢在各种温度与压力下的平衡,并且利用各种催化剂的帮助,于1905年前后研究出一种实验室方法,从空气制成了氨,而且到1912年,哈伯的方法已经在工业和军事的用途上取得了成就。这是由于在1914-1918年的战争期间受了德国需要硝酸盐的巨大刺激的缘故。这个方法就是使氮与氢在200或更高的大气压与500℃的温度下,在一种催化剂上面流动。再使氨与硫酸或硫酸钙起作用,而变成了硫酸氨,或将加热的氨和空气一道通过象铂绒那样的催化剂,使氨变成硝酸氨。
一百多年前开始研究的一些催化剂,现在对于化学的动力理论与许多化学工业,起了很重要的作用。催化剂很久以来就用于象哈伯法那样的反应中,近年来应用得更广。将氢气通过混有镍屑的热油液,油便氢化,而变成一种熔点较高更可口的脂肪。在高压下使氢气通过碳粉与煤焦油混合的热糊剂,并用一种适当的催化剂,可使其氢化。生成物经过蒸馏,便成为汽车用的轻油、中油和重油。催化剂用途的例子,多至难以一一列举。
莫斯利的元素表中的缺空,现在已经差不多填满了。1925年,W.和I.诺达克(Nodack)使用X射线分析,发现了43和75号元素,而命名为锝与铼。1926年B.S.霍普金斯(Hopkins)宣布他发现了61号元素仅(Ⅱ即钷Pm)。这或许还没有得到完全的证实、周期表上的倒数第二个缺空——一个元素属典类名成(At)——于1940年由加利福尼亚大学的科森(Corson)、麦肯齐(Mackenzie)与西格雷(Segre)发现。他们在回旋加速器里,用a质点轰击铋而发现这个元素。
卢瑟福…玻尔的原子理论,经过修改以后,使我们对于化学结构有了一个电子的概念。电子可以占据的轨道或能级,由主量子数n=1,2,3等等规定,这也表示壳层里的电子的数目。这些能级上可以存在的最多的电子数是由下列级数(里德堡级数)给出:2×12,2×22,2×32等,外层最多的电子数是8。一满了8这个数,使特别稳定;这种情况发生在除氦以外的一切惰气中;在n=1时,氦有两个核外电子,而氢只有一个。到了钠,开始形成量子数为3的另一个新的电子壳层,到了氩而满额。氢的电子结构是2,8,8。
这一理论给原子价的学说提供了物理学的根据。化合可以看做是电子从一个原子迁移到另一个原子去。原子价代表一个原子必须获得或放弃的电子数。这个原子必须获得或放弃这么多的电子,才能形成一个电子结构同最邻近的惰气一样的体系,或者说形成具有8个电子壳层的体系。化合也可以由于两原子共用一些电子而发生;这种原子价叫做共价。牛津的西奇威克(N.V.Sidgwick)对这一原子价理论阐释得特别详细。
如果两个原子的轨道共用两个电子,它们便是靠所谓共价键结合起来的。如果两个电子不是均等地共有,则一个原子具有多余的阳电,另一个具有多余的阴电。这个分子将具有极性,并且具有偶极矩,这等于一个电荷同两电荷之间的距离的乘积。这些极矩可以根据介电常数(电容率)或不均匀磁场里磁束的偏折度估算出来。雷德(Wrede)、德拜,还有西奇威克与包温,都对偶极矩进行过研究,以此作为探索化学结构的指针。单质分子如H2、O2没有偶极矩,因此是均等地共有电子,但是HCI有一极矩,为1.03×10…18静电单位,原子间的距离是1.28埃;其他化合物也是这样的。
波动力学在化学上也如在物理学上有其重要性,特别表现在共振原理上。共振的发生是由于一个分子由一电子结构跑到另一电子结构中,并且表现出两者的某些性质。
原子发射出线状光谱,但从分子可以得到带状光谱,其分子的组态也可以测定出来。一束单色光经过透明物体时发生散射,由此而形成各种频率的辐射——散射介质的特征(斯梅卡耳…拉曼效应)。哈特利(W.N.Hartley)等人新近证明,结构相似的化合物在紫外区有相似的吸收光谱。他们还从分子结构的观点,研究了红外吸收光谱。
劳厄首先提出用X射线考察晶体结构,先后有弗里德里希与基平,布拉格父子(384页)加以研究。这种研究表明,氯化钠的立方晶体由钠离子组成。每个钠离子为六个氯离子所包围,相同地每个氯离子也为六个钠离子所包围。金刚石里每个碳原子都处在四面体的中心,而与角上的四个碳原子互相束缚。这种紧密的结构说明金刚石的硬性。用X射线对二苯基晶体的分析表明,它具有六个碳原子组成的环形结构,和凯库勒由苯与其衍生物的化学现象推断的一样。新近罗伯森(J.M.Robertson)等人将傅立叶级数的方法应用于萘与蒽,以测定许多化合物组成原子的排列方向和化学键的性质。X射线也被用于考察合金、无机与有机化合物,都有成就。
对于晶体结构的分析,不但可以利用X射线进行,也可利用电子衍射进行,因为以上讲过,运动的电子挟带有波列,而可表现干涉现象等等。由电子衍射和X射线所得的结果是相合的。德拜使用X射线研究晶体粉末,后来发现用相似的方法,对液体与气体也可以得到干涉花样,并且可以测定原子之间的距离。1930年,维耳(Wierl)更使用了改进的方法。
凯库勒发现的苯的环形结构式以及范特…霍夫和勒·贝尔的碳原子结构成四面体的理论,成为立体化学的伟大结构的基础。如果承认碳原子的四个价电子作四面体的排列,则价电子键之间的角度将是109度28’。如果形成环状,由于正五角形的角为108度,一列五个碳原子,首尾两端必然互相接近,形成环状,键间很少应变,因而很稳定。W.H.珀金(Perkin)(子)制出了具有3、4、5和6个碳原子的环状的化合物,近年来,化学家,特别是索普(Thorpe)与英文尔德(Ingold)等人证明,从一个碳原子出来的两个价电子之间的天然角度,显著地受到所附的基团(如甲基团)的影响,因而应变可以减少,稳度可以增加。这种环结构出现在许多天然物里。如范特…霍夫所预测的,旋光性出现于不对称的分子,可是却没有不对称的碳原子。梅特兰(Maitland)和米尔斯(Mills)已经证明丙二烯型化合物的情况就是这样,它们的分子并不具有对称面。化学这一分科的大发展是靠了X射线分析的应用,因为这种分析将原子和分子的结构,表现得异常明白。
建立在煤焦油基础上的化学工业,范围极其广阔。它从理论科学产生,而反转来对理论科学有很大的影响。翁韦多本(Unver-dorben)与霍夫曼(Hofmann)从煤焦油分离出一种名叫苯胺(安尼林油)的物质。霍夫曼还证明煤焦油里有苯。W.N.珀金(父)于1856年用重铬酸钾处理硫酸苯胺,而得到紫色或紫红色的安尼林;这是首创的安尼林染料,以后发明了很多种这类染料。1878年,在库珀(Coupef)和凯库勒奠定的基础上,E.和O.费舍(Fischef)首先阐明了它们的化学结构。他们证明玫瑰苯胺(一品红)、洋红等的来源是碳氢化合物,三苯甲烷。这工作引出许多新染料和合成这种染料所必需的中间体。后来格里斯(Griess)制成具有偶氮基团(N:N)的偶氯化合物。这又导出一个新系的偶氮染料。
茜素染料,如土耳其红,于1868年合成,跟着而来的有蒽醌的其他衍生物。约在1897年,从苯基甘氨酸制出的工业蓝靛,开始将天然蓝靛逐出市场,使印度的种植者破产。
染料在工业上虽属重要,药物对于人们的福利更有贡献。有机药物的合成时代开始于解热药,如安替比林(1883),止痛剂非那西汀(1887)与水杨酸,即阿斯匹灵(1899)。这些药物的发现,创立了现代的化学治疗学硕,主要的创始人当推欧立希(Paul Ehrlich,1854-1915年)。他制成一种医治马病的药物与一种名叫盐酸二氨基联砷酚(即六①六)的砷化合物,能杀灭在人体内造成梅毒的螺旋体菌(1912)。尿素的一种复杂衍生物,于1924年为富尔诺(Four-neau)所制成,能消灭造成昏睡病的寄生虫。以后几年,一系列以氨苯磺胺和磺胺吡啶等磺胺类药物为基础的合成药,由梅(May)与贝克(Baker)合成,叫做M。B。693,对于控制伤害人畜引起很多疾病的链球菌和肺炎球菌都很有效,而磺胺胍成了痢疾的特效药。
起初这些药物并无理论的基础,到1940年菲尔兹(FildeS)、伍兹(Woods)与塞尔比(Selbie)才证明,磺胺类药物的作用在于阻止病原菌获得它们生长所必需的另一种同族物质,名叫对氨基苯甲酸。这个成就表明进一步探讨的方向应当是研究细菌的代谢,寻找细菌所需要的物质,并找出防止细菌利用它们的方法。
青霉素最初是由弗莱明(A.Fl