靠谱电子书 > 经管其他电子书 > 科学史及与哲学和宗教的关系 作 >

第46部分

科学史及与哲学和宗教的关系 作-第46部分

小说: 科学史及与哲学和宗教的关系 作 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




  有不少人研究过这种极低温对于物体性质的效应。最显著的一种变化便是电的传导率的急剧增大;例如铅在液态氦的温度(-268.9℃)的导电率比在0℃时,约大十亿(109)倍。电流在这种低温的金属电路里,一经开始,使经历许多小时而不稍减。

  要从热的供应得到有用的功,温差是必需的。但在自然界中,通过热的传导与其他方式,温差是不断变小的。因此在一个有不可逆的改变进行的孤立的系统中,可作有用的功的热能倾向于不断地变得愈来愈少,反之,克劳胥斯称为熵的数学函数(在可逆的系统中是常数),却倾向于增加。当可用的能达到最小限度或熵达到最大限度的时候,就再没有功可做了,这样就可以确定这个系统的平衡所必需的条件。同样,在一个等温(即温度不变)的系统中,当吉布斯(Willard Gibbs)所创立的另外一个数学函数:“热力学的位势”到了最小限度的时候,也可以达到平衡。这样,克劳胥斯、凯尔艾、赫尔姆霍茨、吉布斯与奈恩斯特(Nernst)等就创立了化学和物理学平衡的理论。现代的物理化学的很大一部分,以及许多工业上重要的技术应用都不过是吉布斯热力学方程式的一系列的实验例证而已。

  最有用的结果之一就是所谓的相律。设想一系统里有n个不同的成分(例如水与盐两个成分)和r个相(例如两个团体、一个饱和溶液和一个蒸汽等四个相),根据吉布斯定理,自由度的数目F将是n-r,这上面还须加上温度与压力两个自由度。因此相律可表为下式:

  f=n-r+2

  以前发现的第二个方程式给出如下四个量——即任何物态变化的潜热L,绝对温度T,压力p与容积的变化u2-u1——之间的关系,即

  L=T(dp/dT)(v2-v1)或dp/dT=L/T(v2-v1)。

  这个方程式的原理本来是詹姆斯·汤姆生(James Thomson)所创立的,1850年左右,由凯尔文男爵、兰金和克劳胥斯等人加以发展,以后再由勒·夏特利埃(Le Chatelier)应用到化学问题上。潜热方程与相律方程合在一起提供了不同的相的平衡的一般理论,以及系统不平衡时压力随温度的变化率。由此也可以知道,外界对系统的作用在系统内造成一种对抗的反作用。

  在相律方程里,如r=n+2,则F=0,这个系统便是“非变系”。例如,在只有一个成分的情况下,当水质的冰、木和汽三相集在一起的时候,它们只有在某一特殊温度才能达到平衡,而且只有在压力调整到某一特殊数值的时候,才能达到平衡。如果只有两相,例如水与汽,则r=n+1与F=n=1,因而系统只有一个自由度。在PT曲线上任何一点上,这两相都可以达到平衡,这曲线上每点的斜率都可由潜热方程测定。不只一个成分的系统自然更加复杂。

  相律关系在科学与工业上极重要的一种应用,便是合金结构的研究。这一研究为人们提供了具有特殊性质、适合于特殊用途的许多金属。这方面的理论主要是利用三种实验方法创立起来的:(1)以适当的液体侵蚀金属,放在显微镜下研究其磨光的截面;在1863年,英国谢菲尔德(Sheffield)的索尔比(H C.Sorby)和德国夏罗腾堡(Charlottenburg)的马顿斯(Martens)创立了这种方法,主要是用来研究铁,其后,这个方法又有很大的改进。这个方法清楚地揭示了金属与合金的晶体结构。(2)热方法。让熔融的金属冷却,对时间和温度加以测量。当物态改变,例如由液态变成固态时,温度的降落变经,或有一段时间完全停顿。在这方面,可以举出鲁兹布姆(Roozeboom)关于吉布斯理论的研究(1900年)和海科克(Heycock)与内维尔(Neville)的实验为例。(3)X射线方法。这个方法是劳厄(Laue)与布拉格爵士父子创立的,它揭示了固体(不论其为盐类、金属或合金)的原子结构,并开辟了一般原子研究的新领域。

  双金系的最简单的平衡可以用海科克和内维尔关于银与铜的研究为例来说明。纯银沿曲线AE(图6)从液态里凝冻,纯铜沿曲线BE从液态里凝冻。在交点E,银、铜两晶体同时出现,因而凝固是在不变的温度下进行的。在这种合金里,银占40%,铜占60%,其结构是有规则的,因而名叫“易熔合金”。

  如果固体象液体一样可以改变其组成成分,我们将得着“和晶”或“固溶体”,与更复杂得多的现象。鲁兹布姆首先用吉布斯的理论,阐明了这些现象。在表示固溶体的图里,固体的溶度曲线的交点指明了一个极低的、以易熔点得名的温度。在这里,两个固态相一块从其他固态相结晶出来,而形成一种在结构上类似易熔合金的易熔质。图7是说明铁碳(碳少于6%)混合物的鲁兹布姆图的现代形式。这个图可以说明现已查明并且有了名称的各种化合物与固溶体,甚至说明了完全是固体的各种合金在确定的温度下的变化。这种金相图帮助我们探索组成成分、温度调节与物理性质之间的关系,以及铁和钢“回火”的结果。

  近年来制出了许多具有各种特殊性质、适合各种用途的新合金,特别是铁的合金。供和平目的使用的合金如不锈钢,供制造武器使用的铁合金,都含有少量的镍、铬、锰、钨等金属。这些金属经过适当的热处理之后,可使铁的刚硬度或坚韧度增大或具有其他需要的性质。这些近年来的发展都是建立在上述理论与实验的基础之上的。以下举出几个这样的合金的例子:

  将3%的镍加在锅内,增加强度而不减少延世。如果使用36%的镍的话,由于碳含量低,膨胀系数将变得很微小,这种合金可用于很多用途,称为“殷钢”或“因瓦(invar)合金”。铭能使碳化物稳定,加少许于钢内,所造成的合金能抗腐蚀。镍铬钢在机器制造上很重要,特别是含有少许钼的镍铬钢。锰也能使碳化物更加稳定,如果锰的成分很多则造成的合金易脆,锰的成分再多一些,最后就制成含碳12%的“高锰钢”。对这种合金的表面加工,可使其坚硬,获得极高的抗磨性,常用以制造碎石机的部件。钨原子量大,能减少固游体里的移动性,因而保持高度的抗蠕变能力,并延缓相变。钨钢与钴钢相同均可用以制造恒磁体。

  在非铁合金里,铝的合金特别有趣,也特别有实用价值。1909年左右,维耳姆(Wilm)等人开始对于这种合金进行认真的研究。后来主要是由于航空工业需要质轻而强的金属,这一研究又有进一步的发展。铝合金里有一种名叫“硬铝”,含铜4%,镁0.5%和锰O.5%,其余95%为铝。为时间所硬化后,硬铝的强度可与软钢相比。还有许多别的铝合金与其他金属的合金,各具有特殊的性质。

  热力学第一定律是能量守恒原理,第二定律是可用的能量愈来愈少。在把这些观念扩大应用到整个恒星宇宙上的时候,就有人认为,宇宙间的能量不断地通过摩擦转化为热而浪费了,同时,可用的热能又因温差减少而不断地减少起来。于是有些物理学家便想到在遥远的将来宇宙中所储蓄的一切可用的能量可能都要转化成热,平均分布到保持机械平衡的物质中,以后就永远不可能再有任何变化了。但这个结论建立在几个未经证明的假设上。(1)它假定根据有限的观察结果得出的结论,在大体上还没有弄清的更广泛的局面中同样有效;(2)它假定恒星宇宙是孤立的体系,没有能量可以进去;(3)它假定单个分子由于互相碰撞,速度不断地改变,我们不能追踪它们,把它们分为快速与慢速两类。

  麦克斯韦想象有一个极小的生物或妖魔,有极微妙的感觉,可以跟踪每个分子的行动,负责管理墙壁上一扇无摩擦的滑动门,墙壁两边有两个装满气体的房间。当快速分子由左到右运动时,小妖立刻开门,当慢速分子来时,他立刻关门。于是快速分子聚集在右室,慢速分子聚集在左室。右室里的气体逐渐变热,左室里的气体逐渐变冷。这样,有了控制单个分子的能力就可以使弥散的能量重新集中起来。

  在十九世纪所了解的自然界的情况下,在我们只能用统计的方法来处理分子的时候,能量耗散的原理原是不错的。人们生活与活动需要的能量的供应量好象不断地愈来愈少,而热力学上的衰变的过程也有慢慢消灭宇宙里的生命的危险。按照新近的知识,这个结论究竟在多大程度上得到修改或证实,我们将在后面的一章内再加论述。在这里,我们应该指出,当分子的速度按照麦克斯韦-波尔茨曼定律分配的时候,熵达到最大值——即能量的耗散达到最大限度——的热力学条件就达到了,而这种分配的概率却是一个最大值。这样,就把热力学同概率论的已知定律及物质运动论联系起来了。

  光谱分析

  那种把天和地区别开来的传统看法,经过整个中世纪,人们还是这样相信,但伽利略与牛顿却把这种看法打破了。他们用数学方法与观察方法证明,通过实验确立的落体定律在整个太阳系中一样适用。

  可是要最后证明天地同一,不但需要天地在运动方面是类似的,而且还需要证明天地在结构上与组成成分上也是类似的,还需要证明构成地上物体的习见化学元素,在太阳、行星与恒星的物质中也一样的存在。这好象是一个无法解决的问题。可是在十九世纪中叶却找到了一个解决的办法。

  牛顿已经证明日光通过棱镜所形成的彩色光带,是由于白光分析成物理上比较简单的成分的缘故。1802年沃拉斯顿发现太阳的光谱被许多暗线所截断;1814年弗朗霍费(Joseph Fraunhofer)重新发现这些暗线,并用多个棱镜增加光谱的色散度,仔细地将暗线的位置描绘下来。另一方面,1752年,梅尔维尔(Melvil)首先观察到,金属或盐类的火焰所造成的光谱,在黑暗的背景上呈现特殊的彩色明线;1823年,约翰·赫舍尔(John Herschel)爵士又一次表示这些谱线可以用来检验金属的存在。这建议引起人们对于谱线位置进行观测,并加以描绘与记录。

  1849年,弗科研究了炭极间的电弧光所生的光谱,发现在黄橙两色之间,有两条明线,恰在弗朗霍费称为D的两条暗线位置上。弗科更发现当日光通过电弧时,D线便比较平常为暗,若将一个炭极的光(它本身产生连续光谱而无暗线)通过电弧,则D线又会出现。弗科说:“可见,电弧光本身是发生D线的,但若D线从旁的光源而来,电弧光就加以吸收。”

  弗朗霍费谱线的理论好象首先是由斯托克斯(George GabrielStokes,1819-1903年)在剑桥的讲演中加以阐明的,可是由于他特有的谦逊,他并没有将他的见解广泛宣传。任何机械体系都能吸收与自己的天然振动合拍的外来能量,正象只要对儿童秋千不断地给予和它的自然摆动周期一致的一系列小冲击,便能使它动荡不停一样。太阳外围的蒸气分子也必定能吸收从比较热的内部射出的特殊光线的能量,只要这些光线的振动周期同蒸气分子的振动周期一致。这样射来的光必定缺少了具有那种特殊振动周期的光(即某一色彩),结果太阳光谱中便产生一条暗线。

  1855年,美国人奥尔特(David Alter)描述了氢和其他气体的光谱。1855至1863年间,本生(von Bunsen)在罗斯科(Roscoe)的合作下,进行了一系列的实验来研究光的化学作用,1859年,他与基尔霍夫(Kirchhoff)合作创立了最早的光谱分析的精确方法,于是化学元素,尽管只有微量,也可由它们的光谱检查出来。铯与铷两个新元素就是用这个方法发现的。

  本生与基尔霍夫在事先不知道弗科实验的情况下,让发连续光谱的白热石灰光,通过含有食盐的酒精火焰,结果,看到了弗朗霍费的D谱线。他们又把锂放在本生煤气灯中重新进行了这个实验,找到一条在太阳光谱中找不到的暗线。他们断定太阳的大气中有纳,但没有锂,或者是含量太少,观察不到。

  这样开始的天体光谱学,经过哈金斯(Huggins)、詹森(Jan-ssen)与洛克耶(Lockyer)等人的努力,有了很大的发展。1878年,洛克耶在太阳色球层的光谱的绿色部分看见一条暗线,和地上光谱中任何已知线都不符合。他和弗兰克兰(Frankland)共同预言,太阳里有一个可以说明这种现象的元素;他们并把这个元素命名为氦。1895年,拉姆赛在一种结晶铀旷里发现了这个元素。

  1842年,多普勒(Doppler)指

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的