上帝掷骰子吗--量子物理史话-第5部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
版权所有:castor_v_pollux 原作 提交时间:2003…05…28 09:54:11
第二章 乌云
一
1900年的4月27日,伦敦的天气还是有一些阴冷。马路边的咖啡店里,人们兴致勃勃地谈
论着当时正在巴黎举办的万国博览会。街上的报童在大声叫卖报纸,那上面正在讨论中国
义和团运动最新的局势进展以及各国在北京使馆人员的状况。一位绅士彬彬有礼地扶着贵
妇人上了马车,赶去听普契尼的歌剧《波希米亚人》。两位老太太羡慕地望着马车远去,
对贵妇帽子的式样大为赞叹,但不久后,她们就找到了新的话题,开始对拉塞尔伯爵的离
婚案评头论足起来。看来,即使是新世纪的到来,也不能改变这个城市古老而传统的生活
方式。
相比之下,在阿尔伯马尔街皇家研究所(Royal Institution; Albemarle Street)举行
的报告会就没有多少人注意了。伦敦的上流社会好像已经把他们对科学的热情在汉弗来?
戴维爵士(Sir Humphry Davy)那里倾注得一干二净,以致在其后几十年的时间里都表现
得格外漠然。不过,对科学界来说,这可是一件大事。欧洲有名的科学家都赶来这里,聆
听那位德高望重,然而却以顽固出名的老头子——开尔文男爵(Lord Kelvin)的发言。
开尔文的这篇演讲名为《在热和光动力理论上空的19世纪乌云》。当时已经76岁,白发苍
苍的他用那特有的爱尔兰口音开始了发言,他的第一段话是这么说的:
“动力学理论断言,热和光都是运动的方式。但现在这一理论的优美性和明晰性却被两朵
乌云遮蔽,显得黯然失色了……”(‘The beauty and clearness of the dynamical
theory; which asserts heat and light to be modes of motion; is at present
obscured by two clouds。’)
这个乌云的比喻后来变得如此出名,以致于在几乎每一本关于物理史的书籍中都被反复地
引用,成了一种模式化的陈述。联系到当时人们对物理学大一统的乐观情绪,许多时候这
个表述又变成了“在物理学阳光灿烂的天空中漂浮着两朵小乌云”。这两朵著名的乌云,
分别指的是经典物理在光以太和麦克斯韦-玻尔兹曼能量均分学说上遇到的难题。再具体
一些,指的就是人们在迈克尔逊-莫雷实验和黑体辐射研究中的困境。
迈克尔逊-莫雷实验的用意在于探测光以太对于地球的漂移速度。在人们当时的观念里,
以太代表了一个绝对静止的参考系,而地球穿过以太在空间中运动,就相当于一艘船在高
速行驶,迎面会吹来强烈的“以太风”。迈克尔逊在1881年进行了一个实验,想测出这个
相对速度,但结果并不十分令人满意。于是他和另外一位物理学家莫雷合作,在1886年安
排了第二次实验。这可能是当时物理史上进行过的最精密的实验了:他们动用了最新的干
涉仪,为了提高系统的灵敏度和稳定性,他们甚至多方筹措弄来了一块大石板,把它放在
一个水银槽上,这样就把干扰的因素降到了最低。
然而实验结果却让他们震惊和失望无比:两束光线根本就没有表现出任何的时间差。以太
似乎对穿越于其中的光线毫无影响。迈克尔逊和莫雷不甘心地一连观测了四天,本来甚至
想连续观测一年以确定地球绕太阳运行四季对以太风造成的差别,但因为这个否定的结果
是如此清晰而不容质疑,这个计划也被无奈地取消了。
迈克尔逊-莫雷实验是物理史上最有名的“失败的实验”。它当时在物理界引起了轰动,
因为以太这个概念作为绝对运动的代表,是经典物理学和经典时空观的基础。而这根支撑
着经典物理学大厦的梁柱竟然被一个实验的结果而无情地否定,那马上就意味着整个物理
世界的轰然崩塌。不过,那时候再悲观的人也不认为,刚刚取得了伟大胜利,到达光辉顶
峰的经典物理学会莫名其妙地就这样倒台,所以人们还是提出了许多折衷的办法,爱尔兰
物理学家费兹杰惹(George FitzGerald)和荷兰物理学家洛伦兹(Hendrik Antoon
Lorentz)分别独立地提出了一种假说,认为物体在运动的方向上会发生长度的收缩,从
而使得以太的相对运动速度无法被测量到。这些假说虽然使得以太的概念得以继续保留,
但业已经对它的意义提出了强烈的质问,因为很难想象,一个只具有理论意义的“假设物
理量”究竟有多少存在的必要。开尔文所说的“第一朵乌云”就是在这个意义上提出来的
,不过他认为长度收缩的假设无论如何已经使人们“摆脱了困境”,所要做的只是修改现
有理论以更好地使以太和物质的相互作用得以自洽罢了。
至于“第二朵乌云”,指的是黑体辐射实验和理论的不一致。它在我们的故事里将起到十
分重要的作用,所以我们会在后面的章节里仔细地探讨这个问题。在开尔文发表演讲的时
候,这个问题仍然没有任何能够得到解决的迹象。不过开尔文对此的态度倒也是乐观的,
因为他本人就并不相信玻尔兹曼的能量均分学说,他认为要驱散这朵乌云,最好的办法就
是否定玻尔兹曼的学说(而且说老实话,玻尔兹曼的分子运动理论在当时的确还是有着巨
大的争议,以致于这位罕见的天才苦闷不堪,精神出现了问题。当年玻尔兹曼就尝试自杀
而未成,但他终于在6年后的一片小森林里亲手结束了自己的生命,留下了一个科学史上
的大悲剧)。
年迈的开尔文站在讲台上,台下的听众对于他的发言给予热烈的鼓掌。然而当时,他们中
间却没有一个人(包括开尔文自己)会了解,这两朵小乌云对于物理学来说究竟意味着什
么。他们绝对无法想象,正是这两朵不起眼的乌云马上就要给这个世界带来一场前所未有
的狂风暴雨,电闪雷鸣,并引发可怕的大火和洪水,彻底摧毁现在的繁华美丽。他们也无
法知道,这两朵乌云很快就要把他们从豪华舒适的理论宫殿中驱赶出来,放逐到布满了荆
棘和陷阱的原野里去过上二十年颠沛流离的生活。他们更无法预见,正是这两朵乌云,终
究会给物理学带来伟大的新生,在烈火和暴雨中实现涅磐,并重新建造起两幢更加壮观美
丽的城堡来。
第一朵乌云,最终导致了相对论革命的爆发。
第二朵乌云,最终导致了量子论革命的爆发。
今天看来,开尔文当年的演讲简直像一个神秘的谶言,似乎在冥冥中带有一种宿命的意味
。科学在他的预言下打了一个大弯,不过方向却是完全出乎开尔文意料的。如果这位老爵
士能够活到今天,读到物理学在新世纪里的发展历史,他是不是会为他当年的一语成谶而
深深震惊,在心里面打一个寒噤呢?
*********
饭后闲话:伟大的“意外”实验
我们今天来谈谈物理史上的那些著名的“意外”实验。用“意外”这个词,指的是实验未
能取得预期的成果,可能在某种程度上,也可以称为“失败”实验吧。
我们在上面已经谈到了迈克尔逊-莫雷实验,这个实验的结果是如此地令人震惊,以致于
它的实验者在相当的一段时期里都不敢相信自己结果的正确性。但正是这个否定的证据,
最终使得“光以太”的概念寿终正寝,使得相对论的诞生成为了可能。这个实验的失败在
物理史上却应该说是一个伟大的胜利,科学从来都是只相信事实的。
近代科学的历史上,也曾经有过许多类似的具有重大意义的意外实验。也许我们可以从拉
瓦锡(AL Laroisier)谈起。当时的人们普遍相信,物体燃烧是因为有“燃素”离开物体
的结果。但是1774年的某一天,拉瓦锡决定测量一下这种“燃素”的具体重量是多少。他
用他的天平称量了一块锡的重量,随即点燃它。等金属完完全全地烧成了灰烬之后,拉瓦
锡小心翼翼地把每一粒灰烬都收集起来,再次称量了它的重量。
结果使得当时的所有人都瞠目结舌。按照燃素说,燃烧后的灰烬应该比燃烧前要轻。退一
万步,就算燃素完全没有重量,也应该一样重。可是拉瓦锡的天平却说:灰烬要比燃烧前
的金属重,测量燃素重量成了一个无稽之谈。然而拉瓦锡在吃惊之余,却没有怪罪于自己
的天平,而是将怀疑的眼光投向了燃素说这个庞然大物。在他的推动下,近代化学终于在
这个体系倒台的轰隆声中建立了起来。
到了1882年,实验上的困难同样开始困扰剑桥大学的化学教授瑞利(J。W。S Rayleigh)。
他为了一个课题,需要精确地测量各种气体的比重。然而在氮的问题上,瑞利却遇到了麻
烦。事情是这样的:为了保证结果的准确,瑞利采用了两种不同的方法来分离气体。一种
是通过化学家们熟知的办法,用氨气来制氮,另一种是从普通空气中,尽量地除去氧、氢
、水蒸气等别的气体,这样剩下的就应该是纯氮气了。然而瑞利却苦恼地发现两者的重量
并不一致,后者要比前者重了千分之二。
虽然是一个小差别,但对于瑞利这样的讲究精确的科学家来说是不能容忍的。为了消除这
个差别,他想尽了办法,几乎检查了他所有的仪器,重复了几十次实验,但是这个千分之
二的差别就是顽固地存在在那里,随着每一次测量反而更加精确起来。这个障碍使得瑞利
几乎要发疯,在百般无奈下他写信给另一位化学家拉姆塞(William Ramsay)求救。后者
敏锐地指出,这个重量差可能是由于空气里混有了一种不易察觉的重气体而造成的。在两
者的共同努力下,氩气(Ar)终于被发现了,并最终导致了整个惰性气体族的发现,成为
了元素周期表存在的一个主要证据。
另一个值得一谈的实验是1896年的贝克勒尔(Antoine Herni Becquerel)做出的。当时X
射线刚被发现不久,人们对它的来由还不是很清楚。有人提出太阳光照射荧光物质能够产
生X射线,于是贝克勒尔对此展开了研究,他选了一种铀的氧化物作为荧光物质,把它放
在太阳下暴晒,结果发现它的确使黑纸中的底片感光了,于是他得出初步结论:阳光照射
荧光物质的确能产生X射线。
但是,正当他要进一步研究时,意外的事情发生了。天气转阴,乌云一连几天遮蔽了太阳
。贝克勒尔只好把他的全套实验用具,包括底片和铀盐全部放进了保险箱里。然而到了第
五天,天气仍然没有转晴的趋势,贝克勒尔忍不住了,决定把底片冲洗出来再说。铀盐曾
受了一点微光的照射,不管如何在底片上应该留下一些模糊的痕迹吧?
然而,在拿到照片时,贝克勒尔经历了每个科学家都梦寐以求的那种又惊又喜的时刻。他
的脑中一片晕眩:底片曝光得是如此彻底,上面的花纹是如此地清晰,甚至比强烈阳光下
都要超出一百倍。这是一个历史性的时刻,元素的放射性第一次被人们发现了,虽然是在
一个戏剧性的场合下。贝克勒尔的惊奇,终究打开了通向原子内部的大门,使得人们很快
就看到了一个全新的世界。
在量子论的故事后面,我们会看见更多这样的意外。这些意外,为科学史添加了一份绚丽
的传奇色彩,也使人们对神秘的自然更加兴致勃勃。那也是科学给我们带来的快乐之一啊
。
二
上次说到,开尔文在世纪之初提到了物理学里的两朵“小乌云”。其中第一朵是指迈克尔
逊-莫雷实验令人惊奇的结果,第二朵则是人们在黑体辐射的研究中所遇到的困境。
我们的故事终于就要进入正轨,而这一切的一切,都要从那令人困惑的“黑体”开始。
大家都知道,一个物体之所以看上去是白色的,那是因为它反射所有频率的光波;反之,
如果看上去是黑色的,那是因为它吸收了所有频率的光波的缘故。物理上定义的“黑体”
,指的是那些可以吸收全部外来辐射的物体,比如一个空心的球体,内壁涂上吸收辐射的
涂料,外壁上开一个小孔。那么,因为从小孔射进球体的光线无法反射出来,这个小孔看
上去就是绝对黑色的,即是我们定义的“黑体”。
19世纪末,人们开始对黑体模型的热辐射问题发生了兴趣。其实,很早的时候,人们就已
经注意到对于不同的物体,