靠谱电子书 > 经管其他电子书 > 爱因斯坦传 >

第3部分

爱因斯坦传-第3部分

小说: 爱因斯坦传 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



斯坦的小手捧着罗盘,只见罗盘中间那根针在轻轻地抖动,指着北边。他把盘子转过去,那根针并不听他的话,照旧指向北边。爱因斯坦又把罗盘捧在胸前,扭转身子,再猛扭过去,可那根针又回来了,还是指向北边。不管他怎样转动身子,那根细细的红色磁针就是顽强地指着北边。小爱因斯坦忘掉了身上的病痛,只剩下一脸的惊讶和困惑:是什么东西使它总是指向北边呢?这根针的四周什么也没有,是什么力量推着它指向北边呢?
爱因斯坦67岁时仍然为童年时的“罗盘经历”感慨万千。
他在《自述》中说:
“当我还是一个四、五岁的小孩,在父亲给我看一个罗盘的时候,就经历过这种惊奇。这只指南针以如此确定的方式行动,根本不符合那些在无意识的概念世界中能找到位置的事物的本性的(同直接‘接触’有关的作用)。我现在还记得,至少相信我还记得,这种经验给我一个深刻而持久的印象。我想一定有什么东西深深地隐藏在事情后面。凡是人从小就看到的事情,不会引起这种反应;他对于物体下落,对于风和雨,对于月亮或者对于月亮会不会掉下来,对于生物和非生物之间的区别等都不感到惊奇。”
显然,人们经验认为“空虚”的空间存在一种什么东西,一种什么力量,迫使着物体朝特定的方向运动。这件偶然小事虽微乎其微,并发生在爱因斯坦成为科学家之前很久的时间里,但这次奇特的经历却对他后来的科学思考与研究极为重要。后来,“场”的特性和空间问题是那样强劲地吸引着这位物理学家。在广义相对论中,爱因斯坦终于天才地解决了这些儿童时代就萌发出来的困惑。不过在当时,它们还只是以朴质的本来面貌显现在他的眼前。
小小的罗盘,里面那根按照一定规律行动的磁针,唤起了这位未来的科学巨匠的好奇心——探索事物原委的好奇心。而这种神圣的好奇心,正是萌生科学的幼苗。
1953年3月14日,爱因斯坦在74岁生日宴会之前,举行了一个简短的记者招待会。会上,他收到一份书面的问题单。单子上第一个问题就是:“据说你在5岁时由于一只指南针,12岁时由于一本欧几里得几何学而受到决定性的影响。
这些东西对你一生的工作果真有过影响吗?”
爱因斯坦的回答是:“我自己是这样想的。我相信这些外界的影响对我的发展确是有重大影响的。”
爱因斯坦接下来的回答似乎更饶有趣味:“但是人很少洞察到他自己内心所发生的事情。当一只小狗第一次看到指南针时,它可能没有类似的影响,对许多小孩子也是如此。事实上决定一个人的特殊反应的究竟是什么呢?在这个问题上,人们可以设想各种或多或少能够说得通的理论,但是决不会找到真正的答案。”
的确,一个儿童的一次偶然经历和日后伟大的科学发现之间,大概怎么推论,也难以找出让人心服的必然性联系。希特勒还是一个孩子时,大约总有舞刀弄枪的游戏活动,但由此推出他最终成为战争狂人的渊源关系,终究有些可笑。所以,尽管爱因斯坦儿童时代“罗盘经历”中感受到的困惑与日后相对论的研究对象有共同性,但这种共同性毕竟有着性质上的差异:前者无非是一个孩子对自然现象的惊奇感;后者则是对宇宙规律的有意探索。倘若爱因斯坦没有成为物理学大师,那小小的“罗盘经历”也就失去任何意义,更不会为人们津津乐道。只是就小爱因斯坦的好奇心来说,他确是一个早熟的、聪慧的孩子。当同年龄的孩子们还在盲目认可一切可感知的对象时,爱因斯坦却感受到一种无法看见的力量,我想,这很可能仍与音乐的无形魅力有关系。
真正促使爱因斯坦对超感官世界发生浓厚兴趣的是数学。音乐已给了爱因斯坦一个和谐美丽的图景,如今,数学又将给他证实这个图景。二者结合起来,就为爱因斯坦的精神发展奠定下第一块坚实的基石。对理想世界的情感依恋与理智认同便是爱因斯坦后来执着、自负、倔强性格的内涵。
爱因斯坦在《自述》中说:
“在12岁时,我经历了另一种性质完全不同的惊奇:这是在一个学年开始时,当我得到一本关于欧几里得平面几何的小书时所经历的。这本书里有许多断言,比如,三角形的三个高交于一点,它们本身虽然并不是显而易见的,但是可以很可靠地加以证明,以至任何怀疑似乎都不可能。这种明晰性和可靠性给我造成了一种难以形容的印象。至于不用证明就得承认公理,这件事并没有使我不安。如果我能依据一些其有效性在我看来是无容置疑的命题来加以证明,那么我就完全心满意足了。比如,我记得,在这本神圣的几何学小书到我手中以前,有位叔叔①曾经把毕达哥拉斯定理告诉了我。经过艰巨的努力以后,我根据三角形的相似性成功地‘证明了’这条定理;在这样做的时候,我觉得,直角三角形各个边的关系‘显然’完全决定于它的一个锐角。在我看来,只有在类似方式中不是表现得很‘显然’的东西,才需要证明。而且,几何学研究的对象,同那些‘能被看到和摸到的’感官知觉的对象似乎是同一类型的东西。这种原始观念的根源,自然是由于不知不觉存在着几何概念同直接经验对象的关系,这种原始观念大概也就是康德提出那个著名的关于‘先验综合判断’可能性问题的根据。”

①指赫尔曼·;爱因斯坦的弟弟雅各布·;爱因斯坦。
这段颇长的自述是我们理解爱因斯坦科学思想形成发展的重要资料。一个12岁的孩子,在不可思议的感受中迷上了数学,而且初次领略了一个古老又永恒的哲学命题:思维与存在的关系。一个直角三角形,两条直角边的平方相加等于斜边的平方。这个平方并不是显而易见的,可是却能证明。人的思维能证明不是显而易见的事情,这是多么奇妙!那么量一量行不行呢?我们现在无法知道小爱因斯坦当时是否作过这样的设想。从上边引证的自述来看,爱因斯坦直觉地感到:不行。一千次、一万次量度不能代替一次证明,一次证明却能代替一千次、一万次量度。几何学给爱因斯坦带来的思维奇妙性,使他来不及按部就班,竟一口气把《圣明几何学小书》学到最后一页。
在爱因斯坦步入自然科学领域的最初几步,有两个人是很重要的,虽然很难说他们两人在思想上对爱因斯坦有什么大的影响,但正是他们,把打开自然科学殿堂大门的第一把钥匙递给了爱因斯坦。这两个人是爱因斯坦的叔叔雅各布·;爱因斯坦和来自俄国的大学生塔尔梅。
雅各布·;爱因斯坦是个很有事业心并且精力充沛的人,是一个工程师,也和赫尔曼·;爱因斯坦一样爱好数学,就是他动员赫尔曼·;爱因斯坦一家移居慕尼黑。在工厂里,他管技术;在家里,他则是小爱因斯坦入学前的数学启蒙者。爱因斯坦上学后,雅各布叔叔常常给小爱因斯坦出些数学题让他解答。每当正确解答后,爱因斯坦就特别高兴。
1888年10月,爱因斯坦从慕尼黑国民学校进入路易波尔德中学学习,一直读到15岁。这期间,来自俄国的大学生塔尔梅成为爱因斯坦家里的常客。塔尔梅每星期四到爱因斯坦家来吃晚饭,这是慕尼黑犹太人帮助外国来的穷苦犹太学生的慈善行动。塔尔梅是学医的,但对各种自然科学知识以及哲学均抱有兴趣。他对小爱因斯坦的超常求知欲及能力很吃惊。那本让爱因斯坦终身难忘的“神圣的几何小书”便是塔尔梅送给爱因斯坦的。一开始,塔尔梅总是和爱因斯坦谈论数学问题,越谈就越引起爱因斯坦对数学的浓厚兴趣。对学校枯燥教学方式厌倦的爱因斯坦干脆自学起微积分,他提出的数学问题常弄得中学数学老师张口结舌,不知如何回答。
尽管爱因斯坦的数学成绩永远第一,但老师并不喜欢他。
一次,一个老师公开对他说:“如果你不在我的班上,我会愉快得多。”爱因斯坦不解地回答:“我并没有做什么错事呀!”老师回答说:“对,确是这样。可你老在后排笑着,这就亵渎了教师需要在班级中得到的尊敬感。”
爱因斯坦当然没有任何过错,他的老师的抱怨也可理解。爱因斯坦超常的数学能力确实让一个普通的中学教师感到难堪和无法言说的心理压力。
和这位教师不太大度的心理相反,塔尔梅虽不久后也不是爱因斯坦数学上的对手了,但他依然热情地为爱因斯坦介绍当时流行的种种自然科学书籍和康德的哲学著作,特别是布赫纳的《力和物质》、伯恩斯坦的《自然科学通俗读本》,给爱因斯坦留下极深的印象。在伟大的科学家们的生涯中,人们发现:他们往往在年幼时期由于偶然的机会接触到一部著作,从而对他们的命运产生重大影响。爱因斯坦也不例外,他在《自述》中说:
“在12—16岁的时候,我熟悉了基础数学,包括微积分原理。这时,我幸运地接触到一些书,它们在逻辑严密性方面并不太严格,但是能够简单明了地突出基本思想。总的说来,这个学习确实是令人神往的;它给我的印象之深并不亚于初等几何,好几次达到了顶点——解析几何的基本思想,无穷级数,微分和积分概念。我还幸运地从一部卓越的通俗读物中知道了整个自然科学领域里的主要成果和方法,这部著作①几乎完全局限于定性的叙述,这是一部我聚精会神地阅读了的著作。当我17岁那年作为学数学和物理学的学生进入苏黎世工业大学时,我已经学过一些理论物理学了。”

①伯恩斯坦的《自然科学通俗读本》是一部有五、六卷的著作。
蓬勃发展的自然科学为年轻的爱因斯坦展现出自然界的神奇和规律,童年时代由音乐孕育出来的和谐美景如今又与宇宙、自然的和谐图景产生了谐振。相比之下,音乐的和谐只能感受,而宇宙、大自然的和谐却可以通过人的思维去研究、把握,并用数学方式表现出来,这一种饱含人类思维结晶的和谐图景,并不是简单的感觉对象,而是高级的理性活动与宇宙、大自然的沟通,是人类精神的杰出代表与宇宙、大自然对话的成果。由此,爱因斯坦那超凡的独立人格在理论物理学中获得了深刻的文化内涵,他献身于科学的远大抱负也就从一开始便打上了理想人格的印记。不弄清这一点,我们就很难理解爱因斯坦为什么在成为一代物理学大师的时候又同时成为文明社会楷模。
罗盘、几何、微积分、自然规律,一步一个阶梯,一步一个坚实的脚印,爱因斯坦扬起了科学远征的船帆,和实验物理学家不同,数学,始终是爱因斯坦的主要工具。
爱因斯坦于1915年完成的广义相对论,正是数学与自然科学之间相互有效结合的光辉范例。爱因斯坦所提出的物理问题,迫使某些数学方法必须加以完善。因而,促进了数学的发展,反过来又推动了物理学研究的进一步发展。1915年年底,爱因斯坦在广义相对论中阐明了引力的几何学理论,这是自然科学史上最伟大的理论成就之一。1955年,物理学家玻恩在一次报告中评价道:“对于广义相对论的提出,我过去和现在都认为是人类认识大自然的最伟大的成果,它把哲学的深奥、物理学的直观和数学的技艺令人惊叹地结合在一起。”
由于广义相对论的实验基础不够广泛,它主要建立在一种数学式的推理之上。所以,广义相对论刚问世时,许多物理学家都视之为拼拼凑凑的数学游戏,不屑一顾。为了验证广义相对论的理论,爱因斯坦指出了三个可资验证的“效应”,并用天文观测手段,先后一一验证了这三个效应。于是,数学物理学家推崇为内部和谐、结论正确的新引力理论从而也得到了验证。
第一个效应是水星近日点附加的进动。离太阳最近的水星,每绕太阳公转一周,它离太阳最近那一点的位置就有些改变,这就是所谓水星近日点的进动。这是法国天文学家勒维里埃很早发现的一种现象。经观测,每100年进动5600秒,考虑金星对水星的吸引以及其他种种因素,可以解释5557秒,余下的43秒,却无法解释。人们说这是飘浮在牛顿的引力理论上空的一朵乌云。根据广义相对论理论,爱因斯坦否定了半个世纪以来许多天文学家的假设,他们认为存在一颗名叫“火神星”的行星,它就是水星近日点余下43秒进动的神秘原因。建立在牛顿万有引力理论上的如此方法,曾精确有效地找到海王星,这次却怎么也不找不到“火神星”。爱因斯坦的解释是根本不存在什么“火神星”,

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的