靠谱电子书 > 经管其他电子书 > 策略思维 >

第49部分

策略思维-第49部分

小说: 策略思维 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




15 ,错错得对
父母经常遇到一个难题,就是怎样惩罚做坏事的孩子。孩子们总有一种奇怪的念头,并且不相信父母真能说到做到,实施惩罚。他们认为惩罚对父母的伤害可能就跟对自己的伤害一样大(尽管受伤的原因并不相同)。父母对待这一矛盾的标准对策是强调惩罚完全是为孩子着想。父母说了要惩罚做坏事的孩子之后,怎样才能更好地使这一威胁变得可信呢?
案例讨论
若是一对父母加一个孩子的家庭,我们面对的是一个三人博弈。团队合作有助于父母作出一个可信的威胁,要惩罚做坏事的孩子。假定孩子当真做了坏事,按照计划,父亲应该实施惩罚。如果儿子以为,只要指出父亲这一行动的“不合理性”,即双方都将受到伤害,就能逃脱惩罚,父亲可以这么回答:假如他真有选择余地,他当然不愿意惩罚自己的儿子;但是,假如他没能实施惩罚,他就破坏了他和妻子达成的一个协议,而破坏这个协议产生的代价将超过惩罚孩子带来的代价。由此,惩罚的威胁就变得可信了。
即便单亲家庭也能玩这个博弈,只不过论证起来比较费事,因为惩罚的协议必须在父亲(或母亲)与孩子之间达成。和上面一样,假定孩子当真做了坏事,按照计划,父亲应该实施惩罚。如果儿子以为,只要指出父亲这一行动的“不合理性”,即双方都将受到伤害,就能逃脱惩罚,父亲可以这么回答:假如他真有选择余地,他当然不愿意惩罚自己的儿子;但是,假如他没能实施惩罚,这就等于他失职了,而他要为失职遭到惩罚。因此,他惩罚自己的儿子的目的在于避免自己遭到惩罚。不过,谁来惩罚他呢?答案是他的儿子!儿子会说,如果父亲原谅他,他也会原谅父亲,不会因为父亲没有惩罚自己而惩罚他。父亲会说,假如儿子不能惩罚他的过分宽容的做法,这就等于儿子在一天之内第二次做出了应受惩罚的行为!就这样,在你来我往之间,父子相互监督,都保持了诚实。这听上去可能有点牵强,却并不比大多数用于支持惩罚孩子坏行为的论证过程来得简单。

16 .赢得最后一步
第1章我们讲述了如何在美洲杯帆船比赛中领先的故事。既然每艘船都能看到其他船的行动,丹尼斯·康纳若选择尾随约翰·伯特兰的航线,做起来相对会比较容易。若是要在同时行动的博弈当中保持领先地位,情况就会变得更复杂;这时需要的是预测,而不是观察。
在复式桥牌比赛中,每一个队的成绩,是由本队打某一副牌的结果与另一队跟完全不同的对手打同一副牌的结果相比而得。假定你代表A队出赛,打到最后一副牌的时候,你领先B队的戈伦和泽克。
你拿到的这一手牌虽然很好,却并非必胜无疑。你一定可以完成6无将的定约。你估计,你完成7无将定约的概率是50% ,不过,戈伦和泽克完成7无将定约的概率也是50% ,因为他们拿的是同一手牌,正在另一个房间跟另一对对手较量。① 如果你叫7无将并顺利完成定约,你将稳拿本次比赛的冠军。即便你叫7无将而未能完成定约,如果戈伦和泽克同样叫7无将,且同样未能完成定约,你也照样能夺得冠军。如果双方同时叫6无将,你也一定可以拿冠军,既然你是领先进入最后一轮的。如果你叫6无将,他们叫7无将,且双双完成定约,他们就会反超,取得冠军。
你怎样做才能使自己取胜的概率达到最大?你觉得戈伦和泽克会怎样做?你有多大机会赢得冠军?
① 关于这个问题,很重要的一点在于,你完成7无将定约的概率应该与戈伦和泽克的概率无关,哪怕两队玩的是同一副牌。如果你只在梅花首攻的时候能完成7无将定约,否则只能完成6无将定约,那么这种情形就会出现。就这副牌而言,梅花或方片首攻的概率相同;因此,你完成7无将定约的概率与戈伦和泽克的概率无关。

案例讨论
现在你要使自己取胜的概率达到最大。图13…6 显示了在不同对手采取不同对策时,你的取胜概率是多少。

                    戈伦与泽克
                  7无将   6无将           
        7无将     0。75     0。50
己队
        6无将     0。50     1。0 
图13…6 己队取胜概率

这些数字是怎么来的?如果两队都叫7无将,你就会胜出,除非你打宕了这一定约且他们完成了定约,发生这样的事情的概率为1/4 ;因此,你取胜的概率是3/4 。如果只有你叫7无将且完成定约,对方没叫7无将,你就会胜出,但你如果打宕了,就会失去冠军称号;两种结果的概率是50对50。如果两队都没叫7无将,你就会稳拿冠军。
既然我们填好了这个表格,计算均衡策略就变得轻而易举。我们采用威廉斯方法,就可以得出结论:2/3的时候应该叫7无将,另外1/3的时候应该叫6无将。① 如果我们看竖列的数字,而不是横行的数字,就会发现,你取胜的概率等于戈伦与泽克失败的概率,由此我们得知,这就需要2/3的时候他们叫7无将,1/3的时候叫6无将。
① 在均衡点,7无将与6无将的比例为(1…0。5):(0。75…0。5)或2:1 。
那么,你赢得冠军的概率有多大?你可以预计到,这种情况下你有2/3的概率取胜。举例而言,如果你叫7无将,而戈伦与泽克叫7无将


的概率是2/3,那么你取胜的概率就是0。75,另外1/3的概率戈伦与泽克叫6无将,那么你取胜的概率就是0。5:加权平均值等于2/3*3/4 +1/3*l/2=2/3。你可以验证一下,其实叫6无将也会得出同样的取胜概率。
相反,假定现在你把2/3的时候叫7无将而1/3的时候叫6无将的混合策略扔在一边,一门心思叫定了7无将。如果戈伦与泽克意识到了这一点,他们就绝不会叫7无将,这样做可以使你取胜的概率降到0。5。采取均衡混合策略的优势在于,你的对手永远不可能从计谋上胜过你。

17 .边缘政策与陪审团
1988年3月25日,负责审理罗伯特·钱伯斯(Robert Chambers) “胡椒谋杀案”的法官霍华德·E·贝尔(Howard E。Bell)遇到了一个非常棘手的问题。据《纽约时报》报道,“12 人的陪审团分崩离析。陪审员们写下灰心丧气的条子,请求调离这个案件。其中一位先生还在法官面前掉下了眼泪,哭诉他的精神已经被巨大的压力压垮了。正午,两张条子同时递出,一张来自陪审团的女领导人,说陪审团已经‘陷人僵局’;一张来自另一名陪审员,说根本没有出现僵局,陪审团仍然有可能做出一个判决。”
陪审团的工作半途而废对谁都没有好处:珍妮弗·莱文(Jennifer Levin)的家人不得不忍受第二次审判,罗伯特·钱伯斯也要多等一段悬而未决的时间,才能知道自己是继续正常的生活,还是要去监狱服刑。虽然双方之间可能没什么共同话题,但他们无疑都希望尽快做出一个判决。
拖延了9天之后,事情越来越明显:即便陪审团确实做出了一个决定,但谁也没有办法在这之前预测到。“后来,陪审员们说,在对钱伯斯的二级谋杀罪的严重指控是做有罪裁决还是无罪开释的间题上,各陪审员的投票摇摆不定。”
贝尔法官怎样才能运用边缘政策给双方提供协助呢?
案例讨论
公诉人费尔斯坦(Fairstein)女士和莱文一家都想得到一种保证,确保钱伯斯接受某种惩罚且被判有罪,他们不愿意看到最后的决定落在一个越来越难以捉摸的陪审团手里,担心他们不能做出决定,导致此案不得不重新审理。
而在被告这边,钱伯斯的律师利特曼(Litman)先生和钱伯斯一家同样有理由担心:无论是陪审团的决定变得越来越难以预计还是重新审理,都比达成调解协议来得糟糕。
贝尔法官可以利用陪审团既有可能做出判决、也有可能陷人僵局的不确定性,威胁原告和被告,迫使他们乖乖地坐下来谈判。法官不能确定陪审团要在多长时间内拿定主意。结果,被告和原告进行谈判的时候,随时可能听见陪审团做出决定或陷人僵局的消息。
这里并不存在一个清晰的界线,说10天又6小时之后就会宣布此次审判无效或做出判决。相反,这是一道光滑的斜坡。贝尔法官有一种激励,希望避免陪审团分裂,并以此作为手段,迫使原告和被告双方尽快达成调解协议。即便法官知道陪审团已经陷入无法挽回的僵局,他也未必愿意告诉双方的律师。他可以叫陪审团留在办公室里玩“大富翁”游戏,为他多争取一两天时间。
如果陪审团陷入僵局的消息泄露了,那么风险也就荡然无存,原告和被告会因此失去相互让步的激励。正是由于原告和被告对这一风险有不同的看法,他们才肯坐下来共同寻求一个折中方案。
一旦一个案子送到陪审团面前,我们就创造了一种风险,而这一风险是我们不能控制的。起初,我们可能以为我们知道陪审团可能做出怎样的判决,这个风险也是可以控制的。不过,随着陪审团审议过程的进行,这一判决的不确定性也会变得越来越大。对立的原告和被告双方开始对陪审团可能做出什么判决出现某种相似的想法,接着,他们可以通过谈判,提出自己的解决方式,以消除这一风险。
不管贝尔法官是不是有意识地采取边缘政策的策略,他还是设法保住了一道光滑的斜坡,迫使大家坐下来调解,并使他们希望返回安全的高地。

18 .管闲事的自由
自由主义或自由意志主义社会哲学家有一个基本的原则,认为人人都有在不受外界干扰的前提下做出某个决定的权利。我们能不能在符合这一原则的基础上做出社会决策呢?
考察一个大多数人都会认为是个人决定范畴的话题:卧室墙壁的颜色。假定有两个人,罗森克兰茨和吉尔登斯顿,还有两种颜色,红和绿。于是就有四种可能的组合。我们用RG表示罗森克兰茨用的是红色而吉尔登斯顿用的是绿色,GR表示相反的组合,RR表示他们都选了红色,GG表示他们都选了绿色。
阐述上面提到的自由意志主义原则的一个方法是,“对于任何决策,假如不同选择的惟一不同在于自家墙壁的颜色,那么,这个人的偏好应该被社会接受。”'8'假定罗森克兰茨喜欢与众不同,一心想用跟吉尔登斯顿不同的颜色。但吉尔登斯顿却是随大流之辈,希望选用跟罗森克兰茨一样的颜色。按照这样的偏好,根本不能达成符合自由意志主义原则的决策,只有尝试不同的可能性。'9' 
你可能以为,这里的问题在于,每个人的偏好,用恰当的话来说,并不在于自家墙壁的颜色,而在于这种颜色是不是跟另一个人的选择相同。任凭这样的偏好主导社会决策,等于过度放任大家去管别人的事情。因此,我们可以创造第二种情境,并限制自由意志主义思想:“如果一个人对于自家墙壁的颜色有一种无条件的偏好,且两种选择的惟一区别在于这种颜色,那么这个人的偏好应该被社会接受。”
假定罗森克兰茨有一种无条件的偏好,喜欢把卧室墙壁涂成红色,即无论X(代表吉尔登斯顿的墙壁的颜色)是R或G,他还是喜欢RX多于GX。如果罗森克兰茨喜欢把自家墙壁涂成红色,那么他还有一种更强的多管闲事的偏好,担心吉尔登斯顿家的墙壁也会涂成红色。因此,对他来说,四种选择的偏好次序是RR最好,G只次之,RG再次之,GG排末尾。吉尔登斯顿对绿色存在相似的偏好次序:GG最好,GR次之,RG再次之,RR排末尾。整个过程如图13…7 所示。

           吉尔登斯顿家的墙壁
             红色       绿色
罗              4          3
森   红色    1          3   
克                

茨              2          1
家  绿色     2          4   




图13…7 第二情境结果的偏好次序'罗森克兰茨,吉尔登斯顿'

显然,自由意志主义原则可能导致一个对双方而言,无论与其他什么结果相比都更糟糕的结果。如何能使自由意志主义可行呢?

案例讨论
自由意志主义原则使参与者陷入了囚徒困境。罗森克兰茨无条件地倾向于将墙壁涂成红色,这相当于一种优势策略。无论吉尔登斯顿选什么颜色,罗森克兰茨若选红色,就能获得更好的结果。按照自由意志主义的要求,社会允许他做这么一个选择。与此相仿,吉尔登斯顿把墙壁涂成绿色也是一种优势策略。同样,自由主义社会也允许他做这么一个选择。
把他们各自的选择放在一起,会得到RG。不过,罗森克兰茨和吉尔登斯顿都更喜欢GR,而不是RG。好比囚徒困境的例子,我们的这个例子,同样说明了两个参与者如

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的