靠谱电子书 > 经管其他电子书 > 大爆炸宇宙通史-完全版 >

第5部分

大爆炸宇宙通史-完全版-第5部分

小说: 大爆炸宇宙通史-完全版 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




正文 时间的开始

2010…1…28 21:14:01 本章字数:1454

时间的开始

让我们回到紧邻大爆炸之后宇宙的那个起始点。通常我们脑海中会闪现出这样一幅场景:在一个广阔的空间里宇宙突然地爆发了,但这是完全错误的。大爆炸的真实情景是:空间、物质以及更为关键的时间,都是在这里同时产生的。空间不是从虚无中产生的,在创世之前并没有虚无。在大爆炸之前时间也还没有开始,甚至谈论大爆炸前的某个时刻也是没有意义的。即使莎士比亚或者爱因斯坦也无法用通常的语言来描绘这一情景,虽然他们拥有非凡的智慧。

这也意味着当我们今天考察宇宙时,询问“大爆炸”是在哪里发生的这个问题是没有意义的。空间自身也是随着大爆炸产生的。因此,在大爆炸刚发生后的时刻,我们现在所见的整个宇宙蜷缩在一个极小的区域,比一个原子核还要小。大爆炸发生在每一个地方,这里没有“爆心”。

对这点的一个很好的直观描述是埃舍尔的一幅着名画作,虽然它的名称比较乏味:三维空间的分割。想象你站在任何一个位于网格交叉点的立方体上,每一个接到立方体上的直杆都延伸出去。在你的视野中所有的东西都从你这里延展出去,所以很自然地会首先感觉到自己正是位于一个特殊的地点:扩展的中心,但随后你就能意识到无论你位于网格的哪一点,看到的直杆向外扩展的景象都是一样的,事实上并没有一个中心。宇宙的情况与此非常类似:每一个星系群看起来都在远离我们而去。如果有一个观测者在这些遥远的星星上回望我们,他也会看到同样的景象,也可能同样地以为自己位于扩张的中心。

另一个经常被提到,而且乍看起来很有道理的问题是“宇宙有多大”。这里我们又遇到了一个大问题,就是有两类可能的答案:宇宙是有限的,还是无限的?如果是有限的,那么它的外面是什么?实际上这个问题是没有意义的。因为空间自身仅存在于宇宙之中,所以从字面上来说根本就没有“宇宙的外面”。另一方面,当我们提到宇宙是无限的时候,实际指的是它的大小是无法限定的。我们无法用日常的语言来解释“无限”,而且我们知道爱因斯坦也做不到因为帕特里克曾经问过他!

还需要记住,我们要把时间看作是坐标中的一维。也就是说,不能简单地问“宇宙有多大”,因为答案会随时间变化。我们可以问“宇宙现在有多大”,但随后我们会看到,相对论的一个结果就是不可能定义一个普遍适用于整个宇宙的叫做“现在”的时刻。

谈论具有有限大小的宇宙立即会使人联想到边界。如果我们走得足够远,会撞到一堵砖墙吗?答案是否定的。宇宙具有数学家们所说的“有限而无界”的性质。一个有用的类比是一只在圆球上漫步的蚂蚁。要是它在这个弯曲的表面上一直朝着一个方向前行,就永远也不会遇到障碍,能够游荡无穷的距离。所以虽然球的尺寸是有限的,但蚂蚁觉察不出来。类似地,如果我们登上一艘无比先进的飞船沿着直线航行,我们也永远不可能到达宇宙的边界,但这并不意味着宇宙是无限的。随后我们还会看到空间也可以被看作是弯曲的。

让我们把自己限定在能够做出科学回答的问题上,即能够通过和观测结果对比来回答的问题。我们可以确定地说可观测的宇宙(顾名思义,即发出的光线有可能到达我们的那部分宇宙)在尺寸上是有限的。因为我们目前最好的估计是宇宙的年龄为137亿年,这样可观测宇宙的边缘(从那里发出的光刚刚到达我们)离我们有137亿光年远,而且还在以每年1光年的速度扩展。实际上后面还要谈到为什么我们永远不可能看到这么远。宇宙一定比我们能看到的要大,这是我们能够确定回答的全部。

正文 宇宙的尺度

2010…1…28 21:14:03 本章字数:1458

宇宙的尺度

说一个目标在离我们137亿光年之外当然很准确,但我们能真正地去理解宇宙的这种尺度吗?我们很容易感受例如从伦敦到纽约的距离,甚至从地球到月球的距离(约38万千米),这几乎是10倍于地球上的环境。有很多人在他们的一生中曾经乘飞机飞行过比这还长的距离,事实上有些航空公司会给予那些乘坐航班累计超过160万千米的乘客以某种特权。但你如何去想象1。5亿千米从地球到太阳的距离?当我们考虑最近的恒星,离我们4。2光年(约40万亿千米)时,这个距离是很难想象的。而星系更遥远得多。银河系最近的邻居仙女座星系距离我们有200万光年之远。

在尺度的另一个极端,想象一个原子的大小同样地困难,任何普通的显微镜都无法看到单独的原子。有这样一种说法:从量级上看,人正处于从原子到恒星的尺度范围的中间。有趣的是,这也正是物理规律最为复杂的地方。在原子世界,我们应用量子物理学;在宇宙尺度,应用相对论。在这两个极端之间,我们对如何调和这些理论的困惑暴露无遗。牛津科学家罗杰·彭罗斯坚定地写下了他的信念:我们对基本物理原理所缺失的理解力,也是我们对人类意识所缺失的理解力。当我们思考所谓的人择原理归纳起来就是宇宙的演化必然保证我们能够存在并认识它时,这个观点尤为重要。

另一个有用的问题是,宇宙中有多少原子?一种估计给出的总数高达1079 个原子,即1后面跟着79个0。

传统上我们把原子看成由三类比较基本的粒子组成:质子(带单位正电荷),中子(不带电)和质量小得多的电子(带单位负电荷)。顺带说一下,在原子层次精确定义什么是电荷远非那么简单。可以把电荷看作是粒子的属性之一,就像大小和质量一样。电荷总是以固定的粒度出现,我们称之为单位电荷。

根据经典模型,原子就像一个小型太阳系,电子环绕中央的原子核旋转,由质子和中子组成的复合的原子核带有正电荷,并且和环绕的电子的总负电荷严格抵消。在我们的太阳系中,行星被引力保持在环绕太阳的轨道上;在原子中,是带负电荷的电子和带正电荷的原子核之间的电磁吸引力使得电子环绕原子核旋转。

过去,我们注意到这个简洁的模型可以解释很多基本的化学现象,比如,为什么原子的外层电子容易参与化学反应:因为它们离核较远,吸引力的约束较小。所以最简单的原子氢原子,只有由一个质子构成的原子核和一个电子组成,整个原子是电中性的:正1加负1等于零。所有原子都具有相同数目的电子和质子。每种元素内这种粒子的数量是唯一的,称为原子序数。比如氦原子有2个质子和2个电子,所以它的原子序数是2。而碳原子的序数是6。重元素含有数目众多的电子和质子。地球上最重的自然元素铀的原子序数是92。

在20世纪早期,把质子和中子看成坚实颗粒的观点甚为流行。但这个图景今天已经变得不那么清晰了。面对很多甚小系统的奇怪行为时,把它们看作由波动而非颗粒构成能够更好地进行解释。这个理论叫做波粒二象性。此外实验显示,电子看起来确实是不可分割,而质子和中子事实上并不是最基本的。它们能被分解成更小的颗粒,叫夸克。夸克现在被认为是最基本的。没有人曾经看到过夸克,但我们知道它们一定存在,因为在粒子加速器中检测到了。人们建造了粒子加速器,以不可思议的高速度把质子打碎,从而探测到夸克。在这些实验中质子似乎破碎了,所以科学家断定质子不是最基本的。自然界不喜欢形单影只的夸克,所以它总是成双或成三地出现。

正文 自然界中的力

2010…1…28 21:14:05 本章字数:648

自然界中的力

夸克的这种性质的起因与把夸克约束在一起的力的不同寻常的性质有关。这种力被称为强核力不是无缘无故的,它只在极小的尺度内才占主导地位,所以我们需要使用非常强大的粒子加速器才能使质子分裂。不像我们在大尺度环境中所熟悉的力例如引力或异性电荷之间的吸引力那样,强力随距离的增加而增加。换句话说,如果我们能够分开两个夸克,会发现分离的距离越大,两者之间拉回的力就越大。最终,当夸克分开到一定程度,造成这种形变所注入的能量是如此之大,以至于能量转化为质量,产生两个新的夸克。这样猛然间我们获得了2对夸克,而不是事先希望的把夸克单独隔离开。这个过程意味着我们在实验中从未产生过独立的夸克。在日常世界中,夸克只作为其他粒子的组分而存在,例如质子和中子中各含有3个夸克。

在刚刚大爆炸后极端高温的宇宙中,夸克具备足够的能量自由地运动。因此,通过理解最大尺度上的宇宙过程,可以增加我们对最小尺度上的粒子的了解。每个粒子在宇宙初期获得的能量比我们在粒子加速器中所能制造的高得多。即使我们建造一个和太阳系一样尺寸的加速器也不可能产生如此巨大的能量。

值得注意的是,当前我们通过粒子物理对微观世界的研究,和通过宇宙学对极大尺度的宏观世界的认识是紧密交织在一起的。为了了解整个宇宙,我们要依靠对于基本粒子的认识,而我们进行此项研究的最好的实验室就是处于萌芽期的宇宙。一个充满了高能基本粒子的炙热空间,是我们想象到的新生宇宙的最早景象。

正文 越大越冷

2010…1…28 21:14:07 本章字数:933

越大越冷

在第一个普朗克时间之后,微小而炽热的宇宙不可思议地开始膨胀,也开始逐渐冷却下来。宇宙是一个沸腾的夸克的海洋,每个夸克携带着巨大的能量以极高的速度在运动,结果是当时没有我们现在看到的这些原子和分子的形态,因为这些复杂的结构是不可能抵御极高温度的分裂力的。夸克的能量太高,无法被捕获和限制在质子和中子内。事实上在宇宙的婴儿期,夸克可以自由飞驰直到与一个邻居相撞。除了夸克,这种早期的亚原子粒子的浆汁中还含有反夸克除了带有相反的电荷,和夸克完全相同。现在人们相信每种粒子都有对应的反粒子,除了所带电荷外其他特性完全一致。电子对应的反物质粒子是正电子,带有正电荷,其他方面和电子相同。在科幻小说里反物质的概念很常见,它们是无数极为先进的星际飞船发动机的基础,所有这些都来自一个实验事实:当一个粒子和对应的反粒子相撞时,两个粒子都会湮灭,同时释放出巨大的能量。如果在原始宇宙中一个夸克与一个反夸克相遇,它们就会消失,同时发出辐射闪光。反向的进程也会发生,足够高能的辐射(当然是在宇宙演化的早期阶段的能量水平)可以同时产生一对粒子,包含粒子和它的反粒子。这个时期的宇宙充满了辐射,辐射产生粒子对,粒子又极快地在互相碰撞中湮灭,并把能量转移回背景辐射。

贯穿整个时期,宇宙持续地膨胀和冷却。经过第一个1微秒(仅仅10万亿亿亿亿个普朗克时间),当温度降低到约10万亿度的临界值以下时,夸克的运动速度降低到能够被它们之间的相互引力(强力)所捕获的程度。三个一组夸克聚集到一起形成了我们熟悉的质子和中子,总称重子;而反夸克聚集成反质子和反中子,总称反重子。如果重子和反重子的数量是相等的,那么极有可能它们之间的碰撞会使得重子全部湮灭。而当宇宙膨胀时,辐射的能量被稀释,不再能够产生新的粒子,这样宇宙中的物质就不可能留存到现在。

仅仅由于从一开始就存在的一点微弱的不平衡挽救了物质,使得我们今天得以存在,使我们能够在这里思考很久以前发生过什么。出于我们至今尚未知晓的原因,每十亿个反重子会对应十亿零一个重子,所以在最初的混战结束后,几乎所有的反重子都消失了,留下的残余的质子和中子形成了今天的原子核。

正文 宇宙的同谋论

2010…1…28 21:14:08 本章字数:1117

宇宙的同谋论

让我们暂时回到现在。想象两个从地球上看去处于相反方向上的距离我们90亿光年的星系,它们之间的距离是180亿光年。泛泛而言,在最大的尺度上,它们身处的宇宙区域看起来是一样的。其中一个可能位于星系团的中心深处,就像我们附近的室女座星系团,另一个可能孤立得多;但是在第一个星系团附近会有孤立的星系,而在第二个星系的附近则不可避免地存在着星系团。所以每个区域都有相同比例的相同类型的星系,而且本地的温度也是一样的。

这就产生出一个被称为“宇宙同谋”的问题。宇宙年龄目前最好的估计是137亿年

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的