投资学(第4版)-第169部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
市场对波动的评估就发生了变化,你的收益应等于1 000×0 。 2 9美元=2 9 0美元。股票
价格的任何变动都将影响到期权价格。但是,如果选择了适当的套期保值率,你的这
部分风险将被抵销掉。在对股价变动的影响进行了套期保值的情况下,你的收益只受
看跌期权本身隐含的波动性的影响。
表2 7 … 1举例说明了假设看跌期权价格变动反映你对波动性的估计时,你的收益与
股价的函数关系。B栏显示了单是看跌期权就能带来利润或损失,这取决于股价是跌
还是涨。而我们在C栏中看到,无论股价如何变动,每个套期的看跌期权带来的收益
几乎等于最初的错误定价。' 1 '
这种套期保值策略实质上与那些积极的股权投资经理们使用的策略是相似的,他
们期望在不持有整个市场头寸的情况下,对特定公司下注。股权投资经理们买入他们
'1' 利润并不准确地独立于股票价格,这是因为股价变化了,所以用于计算套期保值率的得尔塔也变化了。
原则上套期保值率需要随着得尔塔的变化而调整,得尔塔对股价的敏感性称作期权的伽玛,它很类似
于债券的凸性。在这两种情况下,价值函数的曲率意味着套期保值率或久期随着市场条件的变化而变
化,使之恢复平衡是套期保值策略的必要部分。
714 第七部分资产组合管理的应用
下载
觉得被低估的股票并用股指期货来对冲股市风险。这里,期权投资经理们买入他们感
觉被低估的期权,并用股票套期来抵销因股价变动引起的期权风险。
表27…1 对看跌期权资产组合套期保值的盈利
A。 建立套期保值头寸的成本金额/美元
1 000 份看跌期权@ 4 。 4 9 5美元/份4 495
4 5 3股股票@ 9 0美元/股40 770
总支出45 265
B。 看跌期权价值是隐含3 5 %波动的股票价格的函数
股票价格1 9 8 9年1 9 9 0年1 9 9 1年
看跌期权价格/美元5 。 2 5 4 4 。 7 8 5 4 。 3 4 7
每个看跌期权的盈利(损失)/美元0 。 7 5 9 0 。 2 9 0 ( 0 。 1 4 8 )
C。 套期保值的看跌期权资产组合的价值与盈利
股票价格1 9 8 9年1 9 9 0年1 9 9 1年
1 000 份看跌期权的价值/美元5 254 4 785 4 347
4 5 3股股票的价值/美元40 317 40 770 41 223
总计/美元45 571 45 555 45 570
盈利(=价值…A栏的成本)/美元3 0 6 2 9 0 3 0 5
概念检验
问题4:假定你通过买看涨期权而对行情进行下注,你将如何对股价的波动套期
保值?套期保值率又是多少?
交叉期权投机是这种策略的一种变体。假设你发现一个I B M公司股票的看涨期权,
交割期为4 5天,执行价格为9 5,以波动性
=3 3%的价格出售;而另一个看涨期权交
割期为4 5天,执行价格为9 0,其隐含的波动性仅有
=2 7%。由于标的资产与交割期
是一样的,所以你得出的结论是:暗示有较高波动性的看涨期权相对来说被低估了。
为了从错误定价中渔利,你可以买入便宜的看涨期权(执行价格为9 0,隐含波动性为
2 7%)并卖出高价的看涨期权(执行价格为9 5,隐含波动性为3 3%)。如果无风险利率
为4%,且I B M公司股票的售价为每股9 0美元,则买入的看涨期权的价格将为3。620 2美
元,而售出的看涨期权的价格将为2。373 5美元。
但是,无论你是做多还是做空,用这种方法都不会冲销I B M股票价格不确定性所
形成的风险。这是因为有着不同执行价格的看涨期权对标的资产价格的敏感性是不同
的。执行价格较低的看涨期权其得尔塔值较高,因此,I B M股票价格变动的风险就越
大。如果你在这两种期权上持有相同数量的头寸,你就无意间在I B M股票上建立了一
个看好头寸,这是因为你买入的看涨期权的得尔塔值比卖出的看跌期权的得尔塔值高。
事实上,我们在第2 0章中提到这种资产组合(低交割价的多头看涨期权加上高交割价
的空头看涨期权)叫做多头期权价格差。
我们可以用下面的套期保值率建立起一个套期头寸。假定你卖出的执行价格为9 5
的期权是对你买入的执行价格为9 0的期权进行套期保值的资产,那么套期保值率即为:
H=
IBM 股价1美元变动引起的执行价格为9 0的看涨期权价值的变动值
I B M股价1美元变动引起的执行价格为9 5的看涨期权价值的变动值
=
执行价格为9 0的看涨期权的得尔塔值》 1
执行价格为9 5的看涨期权的得尔塔值
你需要卖出一份以上的高执行价格看涨期权才能对买入的一份低执行价格看涨期
权进行套期保值。因为高执行价格看涨期权的价格对I B M股价的敏感度较低,因此,
需要更多的高执行价格看涨期权来减低风险。
下载
第27章风险管理与套期保值
715
假定真实的股票年波动幅度介于两个隐含波幅之间,
=3 0%,我们从第2 1章中
知道,看涨期权的得尔塔值为N(d1),因此,这两种期权的得尔塔值与套期保值率的计
算如下:
执行价格为9 0的期权:
ln(90/90)
+'0。04 +(0。302) /2'′45/365
d=
=0。995
1
0。30
45/365
N (d1) =0。539 6
执行价格为9 5的期权:
ln(90/95)2/2'′45/365
+'0。04 +(0。30)
d=
=…0。413 8
1
0。30
45/365
N (d1) =0。339 5
套期保值率:
0。539 6/0。339 5=1 。 5 8 9
因此,每买入1 000份执行价格为9 0的看涨期权,我们需要卖出1 589份执行价格
为9 5的看涨期权。遵循这种策略,使我们在不持有I B M股票头寸的情况下,能够对相
对错误估价的两种期权下注。表2 7 … 2的A 栏显示建立这种套期保值头寸带来了1 5 1 。 3 0
美元的现金流入,通过卖出看涨期权得到的溢价大于你购买所花的成本。
表27…2 中性得尔塔值的期权资产组合的盈利
A。 建立资产组合时的现金流
(期权价格暗含波幅为2 7%时)买入1 000 份看涨期权(X=90)@3。620 2美元3 620。20美元现金流出
(期权价格暗含波幅为3 3%时) 卖出1 589 份看涨期权( X=95)@2。373 5美元3 771。50美元现金流入
总计1 5 1 。 3 0美元净现金流入
B。 暗含波幅为3 0 %时的期权价格
股票价格1 9 8 9年1 9 9 0年1 9 9 1年
执行价格为9 0的看涨期权/美元3 。 4 7 8 3 。 9 9 7 4 。 5 5 7
执行价格为9 5的看涨期权/美元1 。 7 0 3 2 。 0 2 3 2 。 3 8 2
C。 暗含波幅收敛于3 0 %以后的资产组合价值
股票价格1 9 8 9年1 9 9 0年1 9 9 1年
持有的1 000 份看涨期权价值/美元3 478 3 997 4 557
…卖出的1 589 份看涨期权价值/美元2 705 3 214 3 785
总计/美元7 7 3 7 8 2 7 7 2
当你拥有了股票和期权的头寸并为标的资产价格的波动进行了套期保值时,你的
资产组合就称作得尔塔中性(delta neutral)。意即当股价波动时你的资产价值没有随
之上扬或下跌的趋势。
让我们检查一下,我们的期权头寸实际上就是得尔塔中性的。假定你刚刚建立了
头寸之后,两种期权隐含波动性就变成了一致的,它们都以隐含波动性为3 0%的价格
定价。你期望能从买入看涨期权的升值中获利,同时也希望从卖出看涨期权的贬值中
赚钱。波动性为3 0%的期权价格如表2 7 … 2中B栏所示,你的各种股价的头寸价值如C栏
所示。尽管每一种期权的盈利或损失都受到股价的影响,但是,得尔塔中性的期权资
产组合的价值却是令人乐观的,而且基本上不受I B M股票价格的影响。而且,我们从
A栏可以看出你甚至不需要现金的支出就可以建立起这种资产组合。无论你建立资产
组合,还是当隐含的波动性收敛于3 0%以后结清,都会有现金流入。
由于你识别出价格的不一致性,才出现了这种不平常的投资机会。当价格处于均
衡水平时,就不会产生这样的机会。通过运用得尔塔中性策略从价格差异中获利,无
716 第七部分资产组合管理的应用
下载
论I B M股票价格如何变动,你都会盈利。
得尔塔中性套期保值策略同样受到一些现实问题的限制,其中最重要的是难于确
定下一期合适的波动值。如果对波动值估计不准,得尔塔值也不会准,那么所有的头
寸都将不会获得真正的套期保值。况且,在波动性的变化方面,期权或期权加股票的
头寸通常并不是中性的。例如,用股票进行套期保值的看跌期权也许是得尔塔中性的,
但它的波动性却不是中性的。即便股价保持不变,市场波幅评估的变化也将影响到期
权的价格。
这些问题可能会很严重,因为市场波幅的预测从来是靠不住的。首先,波幅不能
直接观察到,而必须根据过去的数据来估计,这将会给预测带来测度的误差。其次,
我们已经知道不管是历史的波幅还是隐含的波幅都随时间而变动,这样,我们总是在
瞄准一个活动的靶子。尽管得尔塔中性的头寸对标的资产价格的变动进行了套期保
值,它们仍然会有波动性风险(volatility risk),该风险来自波动性的不可预测性。
因此,尽管得尔塔中性的期权套期可以消除标的资产价值波动的风险,却不能消除波
动性风险。
27。2 套利需求对资本市场均衡的影响
资本资产定价模型(C A P M)包含着这样一个意思,即所有投资者都会采取同一
种风险资产组合—市场组合,以获得最佳风险收益率。然而,在C A P M模型中,采
取的假设是投资者只面临一种风险来源—证券未来价值的不确定性,并且财富的货
币价值是经济福利的唯一决定因素。
当然,在现实生活中,投资者必须面对许多其他的风险来源,其中包括:
1) 不确定的劳动收入。
2) 不确定的消费品价格,譬如能源与住房的价格的不确定性。
3) 不确定的寿命。
4) 不确定的未来投资机会,譬如未来利率的不确定性。
自然地,投资者将最大限度地规避这些风险。例如,人寿保单可以被视为对于寿
命预期不确定性的对冲工具。对抗各种风险来源的超出市场套利的需求意味着我们必
须调整以前的处理资产组合需求的方法。我们可以通过一个例子加以说明。
本世纪七八十年代石油价格的戏剧性波动表明了在石油价格的冲击下世界经济是
脆弱不堪的。除了石油价格对股票市值的直接影响外,消费者与投资者亦发现石油价
格不仅影响了他们的家庭取暖和坐车上下班的成本,而且影响了失业率与通货膨胀率。
对于众多投资者来说,受石油价格的不确定性影响更大的是他们的消费与工作,而不
是能源股例如埃克森石油公司股票的价格。
毫无疑义,人们急于寻找一种可以抵销或是规避石油价格不确定性风险的投资工
具。一种自然的套期保值证券是能源板块的股票,它们在其他行业遭受石油价格的冲
击时,会表现出良好的业绩。因此投资者采用例如购买埃克森石油公司股票的套期资
产组合来抵销他们的石油价格风险。因此,最佳风险资产组合就不再是市场组合,投
资者会在市场组合中加入套期资产组合的额外头寸。
但是,如果很多投资者将他们的资产组合从市场组合向诸如能源股的某一特殊板
块倾斜,那么那些证券的相对价格就会发生变化,以反映这种非常的套期保值需求。
例如,能源股的价格会被套期保值需求抬高,从而使它们的投资收益率下降。证券的
套期保值投资者愿意持有这些股票,即便它们的期望收益率比C A P M模型中的期望收
益…贝塔关系所指出的要低。因此,简单的期望收益…贝塔关系需要加以综合以解释超
出市场的套期保值需求对均衡收益率的影响。
默顿'1' 指出,这些套期保值需求将导致C A P M模型的延展或“多因素”版本,这
'1' Robert C。 Merton;“An Intertemporal Capital Asset Pricing Model;”Econometrica 4 1 ( 1 9 7 3 ) 。
下载
第27章风险管理与套期保值
717
其中包括了风险的多维本质。默顿模型的焦点不是每股的资本收益而是投资者财富可
能的消费与投资。这种消费或投资的风险来源可以在很大程度上支配它们的风险溢价。
例如,在石油价格波动的案例中,默顿模型意味着单一C A P M模型的期望收益…贝
塔关系可以被综合起来得到下述两因素关系。
E(ri)…rf =
i M'E(rM)…rf'+
i o'E(rO)…rf'
这里
是市场资产组合中第i种证券的贝塔值,
i0是石油价格风险的贝塔值。正
如我们在利用简单回归分析的传统指数模型中测度贝塔一