mba十日教程(文本版)-第20部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
累计因子
今天的。。 1美元=今天值。。 1美元
投资的。。 1美元=一年后值。。 1。100美元
投资的。。 1美元=两年后值。。 1。210美元
用。。 B例中的因子,第一年末收到的。。 163;000美元,再投
资出去两年后直到第三年末,其累计价值是:
第一年的。。 163;000美元×1。2100=两年后值。。 197;000美元
或。。 197;000美元…163;000美元=34;000美元即再投资后
的收益。
在评估项目或期限较长的投资时,重要的不仅仅是现
金流量金额的大小,更重要的是时间性及怎样使用挣来的利
润进行再投资。
净现值(Net Present Value; NPV)
一位挣工资吃饭的人,希望。。 30年后能有足够的退休养老
金。那么从现在开始,他应该开始存多少钱?在分析这个问题
上,累计价值分析法不失为一个好工具,但却不能解决怎样
评估投资和项目的今天的价值。我们应该用货币今天的价值
来衡量投资。Quarker公司麦片项目今天值我少?这一项目怎
样和另一家设备类似但成本是。。 150;000 元、使用寿命只有四
年的项目做比较?
现金流分析是确定项目现金的流量,净现值分析法则是
用现金今天的价值确定现金流量的价值。通过这种方法就可
以对期限不同的项目进行比较。
例如,苹果计算机公司深信一种新型的。。 Tangerine计算
机一定能为公司净挣。。 1亿美元,但开发这一机型却要用时。。 10
年。这样一来,投资这个项目也许并不明智。因为这。。 1亿元
不仅可能由于通货膨胀而贬值,再说苹果公司还可以将这笔
钱投在机器人技术上,以降低工厂现在的生产成本。即便净
现值分析的结论认定。。 Tangerine项目可行,但从战略上考虑
也许仍有不可取之处。这时,MBA们就要运用他们管理上的判
断力来做决定了。
证券分析人士对购买股票和债券的分析和对购买设备的
分析是一样的。股票能分红,债券将来能有利息收入。证券
的价值是基于未来现金流量的价值。如同。。 Quarker公司用净
现值方法评估购买新设备的优势一样,其它公司也用之评估
新项目,同时还考虑项目的广告效应。在考虑如何解决因意
外伤害致死的官司时,律师们也采用净现值方法将死者未来
能挣得的收入折现。
需要牢记的基本点是:今天的
1元钱要高于将来收到的
1
元的价值。
Quarker公司麦片项目。。 3年内的收益是。。 163;000美元
(51+51+61)。和原先的计算一样,若将。。 163;000美元的现金
流量投在其它公司的。。 10%回报的项目或有。。 10%利息收入的其它
投资中,其回报将能多出。。 34;000 美元。
你愿意投出163;000美元,3年后只收回163;000美元吗?
当然不愿意!倘如此,你就是放弃了现金的时间价值(Timevalue of money),或者说,你放弃了。。 34;000美元!
用这一简单逻辑,净现值分析法就是把将来的现金流量
进行贴现,以得出现在的价值。净现值和累计价值正好相反。
其计算公式如下:
净现值=(将来的收入)×(1+贴现率)…时间期限
从今天开始一年后收到的一元钱,按。。 10%的贴现率计算,
其今天的价值(现值)是:
1美元×(1+10%)。。 …1=0。90909
用这一公式,从贴现系数表(Discount factors) 中可查
出。。 1美元资金在不同期限内、不同贴现率下相应的净现值。
假设有。。 10%回报的再投资机会和相应的风险,根据折现系数
表,将来的。。 1美元资金的现值,不同期限内的价值是:
贴现系数
今天的。。 1美元=今天的。。 1美元
一年后收到的。。 1美元=今天的。。 0。90909美元
二年后收到的。。 1美元=今天的。。 0。82645美元
三年后收到的。。 1美元=今天的。。 0。75131美元
所以,Quarker公司项目的现金流可按下述方法评估:
将来的现金×贴现系数=净现值
年初 …102;000美元×1= …102;000美(今天)
1年后 51;000美元×0。90909=46;363。59美元(今天)
2年后 51;000美元×0。82645=42 ;148。95美元(今天)
3年后 61;000美元×0。75131=45;829。91美元(今天)
Quarker项目净现值=32;342。45美元(今天)
任何项目的评估都取决于:现金流量的大小、时间期限
和贴现率(在此例中贴现率为。。 10%)。
贴现率大小的选取具有相当大的主观性。贴现率(也称
障碍率。。 Hurdle rate)越高,将来收到的一元钱的现值越低(见
附录)。之所以称之为障碍率是因为项目的贴现率越高,项
目就得挣回更多的现金才能达到净现值保持不变。这时项目
的障碍变得高了,要越过去才能持平。在分析投资的项目将
来收回资金有风险时,例如油井项目,选择高贴现率就很有
必要。如果对项目的回报确有把握,例如投资于提高劳动生
产率的设备,或美国国债,选择低贴现率则更有保证。不善
于利用。。 MBA这方面专长的公司常常只用一种障碍率分析所有
的投资项目,这就忽略了项目各自不同的风险。无论在什么
情况下,除非是巧合,都不应用公司从银行的借款的利率作
为贴现率。决定项目贴现率的因素应是项目风险。风险很低
的公司有时使用低利率借到的贷款投资于风险很高的项目。
内部收益率
内部收益率(Internal Rate of Return; IRR) 是净现
值的一种衍变形式。简言之,将投资额的未来现金流量按某
一贴现率贴现,贴现后的总值正好和今天投资金额的总额相
等,这时的贴现率就是投资的内部收益率(即净现值等于零
时的贴现—译者注)。
确定内部收益率,必须经过多次计算比较(试差法),
直至项目的净现值等于零。(当然,再。。 HP计算器就很容易得
出。。 IRR)Quarker公司项目的内部收益率是。。 26。709%。计算的
过程如下:
用“26。709%贴现系数”
今天。。 1。00×(…102;000)美元=…102;000美元
一年后。。 0。78920×51;000美元=40;250美元
二年后。。 0。62285×51;000美元=31。765美元
三年后。。 0。49155×61;000美元=29,985美元。。
NPV=0
内部收益率可用来评估并排出项目的优先级,但却未考
虑项目的资金占用量。于是,就会造成投资规模虽然小,但
因为回报相当高,因而排在了投资规模大收益也不错的项目
之前。如果通用电器公司斥十亿美元的资金于科研,投资大
项目上的资金占用也就很大,但项目的内部收益率却可能较
低。
用内部收益率方法排列项目优先级顺序,还忽略了用于
净现值分析中的障碍率贴现系数。障碍率,正如我前面已介
绍过的那样,是对风险的修正。如果其它条件相同,Quarker
公司投资购买设备这一项目的内部收益率可能要比。。 Merck公
司投资瑞士高风险的癌症研究项目低,但。。 Quarker公司项目
的净现值却可能较高。Quarker公司的项目因风险较低以及相
对小的现金流量,选择。。 10%的贴现率贴现是合适的,因而。。 NPV
值也较高。癌症研究项目风险太高,所以用50%的贴现率分析。
请注意:选用的贴现率越高,未来现金的现值就越低,同时
意味着项目的风险也越高。
概率论
概率论(Probability Theory)是统计学的委婉语,因为
统计学是一门连商学院里最聪明的注册会计师(CPAs)也胆怯
的课程。实际上,概率论一词能更准确地描述如何统计学来
解决问题。在考虑石油钻井出油的概率时,Sam应采取什么方
案?在美国前十所商学院。。 800名已婚的。。 MBA学生中,有多少
人会在学习的头一年里疏远其配偶?这些都涉及概论率的概
念。由于许多商人惧怕统计,于是。。 MBA们就有了发挥才能的
机会。MBA课程强调统计的实用性。如果你对统计不熟,请不
要跳过本节。我虽然无从只用几页纸就让你变成个统计通,
但我敢保证,只要你耐心读下去,就可以掌握今后工作中遇
到实际问题时所应具备的基本分析技能,也知道应于何时求
助于别人。MBA课程最重视传授各门课程解决具体问题的实际
经验。
概率分布
在事物可能出多种结果的情况下,就会有结果的分布。
每种可能都有一种概率。通过认真的分析,有时也凭直觉和
判断,事件(Event)可能结果的概率之和是。。 100%,这和决策树
中的情形一样。表示分布结果的图形叫做概率群或密度分布
函数(Probability density function)。如果可能出现的结
果较少,曲线就不匀称,称为概率群分布函数(Probability
mass function)。
降雨量概率群分布函数
西雅图每日降雨。。 1992年。。 4月(31天)
降雨分布举例
西雅图降雨量的分布就是一种概率分布。我们把假设收
集到的数据列表如下,其分布图附后。
西雅图每日降雨量数据表
(1992年。。 4月)
降雨量概率密度分布函数
西雅图每日降雨量
1962—1992(1240天)
二项式分布
抛掷硬币得到的概率有一正一反两种可能。如果把得到
两个“正面”结果算作成功,那么,抛掷两个硬币的结果分
布就有以下几种可能。
两个都成功正面/正面
一个成功/一个失败正面/反面;反面/正面
两个均失败反面/反面
抛掷硬币的结果是分布的最基本情况,称为二项式分布
(Binomial distribution)。二项式分布的结果有两种:成
功和失败。二者发生的机会相等。
貌似神秘的二项式理论也可用来分析股票市场的实际问
题。在分析股票时,某月内股票的回报如果为正,则称其为
成功;为负或持平时就称其为失败。对。。 1957年至。。 1977年美
国。。 AT&T公司股票价格的研究表明,对每月都进行分析以确定
成功出现的频率,人们发现。。 56。7%的情况下,结果是成功的。
将分析的数据按每三个月(季度)一组列出,研究人员
发现实际成功的频率如下:
#成功次数发生频率
0
0。088
1
0。325
2
0。387
3
0。200
1。000
数学家把抛硬币的结果列表用以解决所有的二项式分布
问题。在。。 AT&T的例子中,利用二项式表格之前需要了解的数
据是:
r=成功可能次数=0到。。 3
n=试验次数=3(一季度内。。 3个月)
P=成功概率=56。7%
利用这些数据,从二项式表中得出的期望结果应是:
#成功期望频率
0
0。082
1
0。318
2
0。416
3
0。184
1。000
令人惊奇的是,二项式的分布和。。 AT&T的实际情况相当接
近。在已知假设的成功概率(p)后,每一季度内赚钱月份的
情况就可以从二项式表中得到。因此,二项式分布对负责投
资组合的基金管理者、公司负责销售的董事和研究人员分析
项目概率、确有实用价值。
正态分布:钟型曲线之迷
正态分布(Normal distribution) 是应用最普遍的
理论,通常称为钟型曲线(Bell curve)。哈佛大学用钟型曲
线确定学生考试成绩。曲线表明。。 15%的学生考试刚刚擦边及
格。达顿商学院的教授们凭借自己的判断给出不太满意的。。 C(极
格)和。。 F(不及格)。结果两所学校校园的竞争风气截然不同。
不同标准偏差曲线的概率密度分布函数
当概率群分布函数是基于多次试验基础之上时,曲线就
趋向于类似钟型的形状,我们称之为概率密度分布函数。描
述西雅图降雨分布的两张图即是这种情况。中间的凸起部分
是由于“中间集中理论”(Central Limit Theorem)作用引起
的。它说明“独立事件重复发生的概率的平均分布呈一种钟
型形状的正态分布”。为什么?简单说,就是因为大量独立
事件的趋势是向中间平均值临近。
“平均事件”这一概念相当含糊。在用应用举例中其定
义延伸到可包括任何一大组的数据。为什么?因为正态分布
易于使用,且和实际生活中的情况又极其相似。市场变化不
定造成股票价格浮动,最终导致或盈或亏的回报结果。回报
可以被认为是市场变化的“平均”值。正如任何事情都可以
用具有平均性来解释一样,正态分布的实用性亦如此。
正态曲线的测量
钟型曲线可用两个名词来描述,即中项(Mean)和标准偏
差(Standard deviation; SD)。中项(μ)是曲线的中心部分,
通常称这个中项为平均值。平均值是用数据加在一起之总和
除以数据点。标准偏差(