黄万里文集-第16部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
slope J at the given section of flow are all given; it is required to find the velocity
profile u~y along the vertical of the section。 Since
u* =
ghJ
and
um = Q / Bh
are known; from
um = u*C /
g ; the Chezy constant reflecting roughness of the
boundary of flow is also given。
Evidently; the u~y relation must satisfy the requirement of total discharge Q
after integration; i。e。;
h
? udy = um h = Q / B
(13)
o
Among an infinite number of such u~y relations; there exists only one relation true
&
that obeys the law of minimum rate of energy reserved
Er in the section; which is
equivalent to the law of maximum rate of energy dissipation:
E
r
h
& = ?
? u 2
( )
?Budy ?
p ?
+ + y ?
?
o ? 2 g ?
87
=
?B h
?
u 3 dy ? ?hQ = min 。
(14)
since
2 g
p
+ y = h ; and
?
o
h
?o Budy = Q 。
Thus the problem reduces to one of finding the function of velocity distribution
along the vertical such that
h
? u 3 dy = min 。
(15)
whith
o
u = u( y ) = u(y;? ) ; where
? = ?(y ) 。
Substituting Eq。 (12) into (15); we have
u 3
h h ?
3
y dy ?
? u 3 dy = ?
* ??
+ 1?
dy = min 。
(16)
o o ? o ?y ?
The equation shows that the required condition of minimum holds for any
multiple of u; i。e。; u=kua ; as
u* =
ghJ
is given; This offers a method to determine
the absolute values of u so as satisfy Eq。 (13)。 Let us change u to ua in Eq。 (12) and
(16) for the time being:
h h
? u 3 dy = k ?
u 3 dy = min 。
(17)
o o a
According to the variational principle; the Euler ’s Formula provides; the
extremum occurs at
u 2 ?ua = 0
a ??
since
ua ? 0 ; the minimum condition is
? y dy
? = 0
(18)
?? o ?y
The integral equation is solved through the following processes:
y d ln y 1 dy
? + = 0
?o ? 2
?y d?
88
d ln y
d (d ln y ) d ln y
d (d? 2 / 2)
( ) ( )
= ? ?
? 2 d ? 2 / 2 d ? 2 / 2
d (? 2 / 2)
1 d (? 2 / 2)
d (d ln y )
d (d? 2 / 2)
= ?
2 ? 2 / 2 d ln y
d (? 2 / 2)
? ? 2 ?
1
1
ln? 2 / 2 = ln(d ln y ) ? ln? d ? + ln C
2 ? 2 ?
1
? ? 2 ? 2
? ?
? 2 ?
? ? 2 ?
1
d ? ? = C d ln y
? 2 ?
3
2 ? ? ? 2
? ?
3 ? 2 ?
2
= ln y C1 + C
? 3
2
= ln y C1 + C
(20)
The
3
? ~ y
2
curve is fixed at the two ends by the following relations: At the
water surface;
y = h;
? = 0;
u = umax
(21)
1 y
This is seen from the Nikuratze experiments of ~
ro ro
curves; although ? is a
little over zero when the Reynold’s number is high。 M。S。Yalin (page 31; (2)) explains
that when approaching the free surface; the turbulent fluctuations will be dampened
du
so that 1 tends to zero while
dy
is not necessary to be zero。
At the top of sand bed; we already have
y = y0 = v / u* ? 0;
? = 1;
u = u*
(11)
Thus; by substituting Eq。 (21) into (20;
C1
ln h
? C2 = 0
(22)
Also Eq。 (11) into (22);
89
1 1
y ? ?
? = ? ln
? ln 1 ? 3
? ?
? h ?
u h
? ?
R
? * ?
(23)
where
R*
ua
= *
v
y dy
1
? 1 ? 3
d ln y
y h
(24)
*
u = ?o ?y
+ 1 = ? ln
?
? ?
o
R* ? ?
+
1
1
y ? 3
? ln ?
? h ?
2
3
1 ? y ?
*
= (1 + 1。5 ln R
) ? 1。5(ln R
) ? ln ? 3
(25)
*
? h ?
To find the mean of ua ;
d
? y ?
? ?
uam = 1 ?h ua 1 ? y ? h ?
u
dy = (1 + 1。5 ln R ) ? 1。5(ln R )3
u* h o *
* * o
2
? ln y ? 3
? ?
*
1
? h ?
*
= (1 + 1。5 ln R
) ? 1。5(ln R
)3 ?(5 3)
(26)
To transform ua back to u in order to satisfy Eq。 (13); we can let
m
*
ua ? 1
u ? u
= (u
? u ) u ? u* = u* (u
? u )
(27)
* m *
um ? u*
uam ? 1
u*
ln R
? (ln R
2
)1 ? ln y ? 3
? Q ? *
* 3 ? ?
? h ?
? u = ? ? u* ? 1 + u*
Bh
(28)
*
? ? ln R*
? (ln R
)3 ?(5 3)
u* h
h 3 2 gJ
? 5 ?
in which
u* =
ghJ ;
R* = = ;
?? ? = 0。9028
v v ? 3 ?
90
2
? Q ? (ln R
)=3 (ln y
h)3
u = u*
+ ? ? u*
*
2
2
(29)
?
? Bh
? (ln R
*
C
)=3 ? ?(5 3)
hJ
? (30)
ghJ
When y=h;
u = umax = 2 2
1 ? ?(5 3) (ln
ghJ )=3 (ln
ghJ )3
?(5 3) ? 1
When y=ym;
u = um ; (ln y
2
h)3
±1
= ?(5 3) = 0。9028; ln y
? ?
? ?
? h ?
= 0。8578 ;
ym / h = 0。424
(31)
which is the exact location of the mean velocity um along the vertical of profile;
while the conventional stipulation of measuring um is
downward from the water surface。
1 ? ym / h = 0。6 ? 0。576
It is seen that Formulae (23) and (29) without any empirical coefficient are
derived from purely theoretical analys
Example
Data from “Summary of Alluvial Channel Data From Flume Experiments”; 1956…61。
U。S。Geological Survey Professional Paper 462…1; 1966。 By H。P。Guy; D。B。Simmons; and E。V。Richardson。
Run 1。 P。 162; 163。
Slope J=0。00034
Depth 0。58 ft。 = 0。177m。 from bottom of flume。
h = 0。535 ft。 = 0。163m。 from sand bed。 Width B = 8。00 ft。 = 2。439m。
Discharge Q=3。42 c。f。s。=。0969m3 /s。 ≈。984m3 /s (from pitot tube measurement)
q=Q/B=0。428ft2 /s;=0。0394m2 /s。≈。04036m2 /s
Temprature T=13。6o C
Suspended load = 0; Bedload=0。000032 lb。/s。ft。=0。0476 t/s。m。
Bed particle size = 0。643×10…3 ft。; D50 =0。000196m。
Mean Velocity; apparent;
uam = 3。42 / 0。58 × 8 = 0。737 ft / s = 0。225m / s
Mean Velocity; actual;
um = Q / Bh = 3。42 / 0。535 × 8 = 0。799 ft。 / s。。
= 0。0394 / 。163 = 0。242m / s
91
。04036
Mean Velocity from pitot measurement= um = ?u?y / h = = 0。248m / s
1
。163
Shear Velocity=0。080 ft。/s=0。0244m/s。 for h=0。177m。
*
Shear Velocity actual;
u = (9。81× 。163 × 。00034)= 2 = 0。0233m / s
Kinematic Viscocity
v = 1。28 ×10 ?5 ft 2 / s = 1。19 ×10 ?6 m 2 / s。
Shear stress at flume bed=0。012 lb。/sq。ft。=58。6×10…6 t/m2 。
*
u h
Reynolds Number R=328; Shear Reynolds No。= = R
。0233 × 。163
=
= 3。192
Froude Number F=0。17。
v * 1。19 × 10 ?6
1 1
Chezy C
g = 9。3 ft 2 / s = 5。14m 2 / s。
Manning n=0。026
Bed configulation; ripple。
The curve fitted u=0。47 lg y+1。15 ft。/s。
=0。143 1g y+0。425 m。/s
=0。312+0。0621 ln y/h m。/s。
Original Data from the U。S。G。S Experiments
SEDIMENT TRANSPORT IN ALLUVIAL CHANNELS
TABLE 12 – Vclocity…profle data for 0。19…mm sand in 8…foot…wile flume
(The lateral section used for measuring was 95…115 ft。 from the headbox。
w。s。…water surface)
Run 2。0 ft from left wall of flume 4。0 ft from left wall of flume 6。0 ft from left wall of flume
Distance above sand
bed (ft)
Velocity
(fps) Distance above sand
bed (ft)
Velocity
(fps) Distance above sand
bed (ft)
Velocity
(fps)
1 。564 w。8。 。535 w。3。 。523 w。3。
2 。547 。88 。506 1。15 。492 1。09
3 。447 。76 。406 1。07 。392 1。09
4 。347 。76 。306 。91 。292 。91
92
5 。247 。68 。206 。91 。192 。84
6 。197 。68 。156 。77 。142 。76
7 。147 。58 。106 。77 。092 。80
8 。097 。52 。056 。52 。042 。76
9 。017 。52 。006 。38 …… ……
The averaged velocity profile of the above data
Run 1。 G。S。Prof。 Paper 462…1; 1966
By Guy; Simmons and Richardson
y
(ft)
h
(m)
y/h Velocity;(ft/s)
Δy
Interval
u
(m/s)
Δy?u
2ft left
Middle 6ft left
Average
。535 。163 1。000 w。s。 w。s。 w。s。 1。03 。004 。314 。00126
。506 。154 。9450 。82 1。15 1。10 1。02 。020 。312 。00624
。406 。124 。7610 。76 1。07 1。09 。97 。030 。296 。00888
。306 。0933 。5720 。72 。91 。92 。85 。031 。259 。00803
。206 。0628 。3850 。68 。91 。85 。81 。031 。247 。00568
。156 。0476 。2920 。60 。77 。78 。72 。023 。219 。00328
。106 。0323 。1980 。53 。77 。77 。69 。015 。210 。00315
。056 。0717 。1050 。52 。52 。77 。60 。015 。183 。00275
。006 。00183 。0112 。52 。38 …。 。40 。009 。121 。00109
Q
= 。0394 ? ?u?y = 0。04036
B
=
Q 。0394
u o = = 。242(m / s)
?u?y 。04036
=
? u = = 。248 (m/s)
m Bh
。163
m h 。163
putation Sheet
The Fundamental Formula
2
3
=2 ? y ?
*
)
(ln R
) ? ? ln ? 3
m
u = u*
+ (u
? u*
= ? h ?
2
*
(ln R
)=3 ? ?(5 / 3)
93
um…u* =0。248…0。0233=0。225
putations
ln R*
= 8。068;
*
(ln R
2
)= 3 = 4。023;
?(5 / 3) = 0。9028
2
4。023 ? (ln y / h)3
u = 0。0233 + 0。225 ×
4。023 ? 0。9028
2
? y ? 3
u = 0。313 ? 0。0720? ln ?
The proposed Formula (1)
?
The Karman Formula:
h ?
u = 2。5 ln
u*
u*
v
y
y + 5。5 = 5。5 + 2。5 ln R* + 2。5 ln
h
u = 0。598 + 。0583 ln y / h
u = 0。312 + 。0621ln y / h
The Karman formula。 (2)
The fitted formula。 (3)
Results of putation and Measurement
y
(m) y
h ln y
h (ln y )2/3
h
u(1)
proposed
u(2)
Karman’s u(3)
data fitted
u
measured
0。163 1。000 0 0 0。313 0。598 0。312 0。314
。154 。945 …。0566 。147 。302 。594 。308 。312
。124 。761 …。2731 。421 。283 。582 。295 。296
。0933 。572 …。5586 。678 。264 。565 。277 。259
。0628 。