形而上学〔古希腊〕亚里士多德-第51部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
于是明显地,假如意式是数,诸单位就并非全可相通,在〈前述〉两个方式中也不能说它们全不相通。
①但其他某些人关于数的议论方式也未为正确。那些不主于意式,也不以意式为某些数列的人,他们认为世上存在有数理对象而列数为现存万物中的基本实是,“本1”又为列数之起点。这是悖解的:照他们的说法,在诸1中有一“原1”
〈第一个1〉,却在诸2中并不建立“原2”
〈第一个2〉,诸3中也没有“原3”
〈第一个3〉。
②同样的理由应该适用于所有各数。关于数,假使事实正是这样,人们就会得想到惟有数学之数实际存在,而1并非起点(因这样一类的1将异于其它诸1;而2,也将援例存在有第一个2与诸2另作一类,以下顺序各数也相似)。
但,假令1正为万物起点,则关于数理之实义,毋宁以柏拉图之说为近真,“原2”与“原3”便或当为理所必有,而各数亦必互不相通。反之,人苟欲依从此说,则又不能免于吾人上所述③若干不符事实之结论。但,两说必据其一,若两不可据,则数便不能脱离于事物而存在。
这也是明显的,这观念的第三翻版④最为拙劣——这就
①参看1080a18—20,23—35。
②20行某人指斯泮雪浦;他不主于意式数而以“本1”为通式要理(本因)
,亚氏于此诋其瑕疵。
③参看1080b37—1083a17。
④指齐诺克拉底之说,参看1080b2。
345
形而上学。
343。
是意式之数与数学之数为相同之说。这一说合有两个错误。
(一)
数学之数不能是这一类的数,只有持此主张的人杜撰了某些特殊的线索才能纺织起来。
(二)
主张意式数的人们所面对着的一切后果他也得接受。
毕达哥拉斯学派的数论,较之上述各家较少迷惑,但他们也颇自立异。他们不把数当作独立自在的事物,自然解除了许多疑难的后果;但他们又以实体为列数所成而且实体便是列数,这却是不可能的。这样来说明不可区分的空间量度是不真确的;这类量度无论怎么多怎么少,诸1是没有量度的;一个量度怎能由不可区分物来组成?算术之数终当由抽象诸1来组成。但,这些思想家把数合同于实物;至少他们是把实物当作列数所组成,于是就把数学命题按上去。
于是,数若为一自存的实物,这就必需在前述诸方式中的一式上存在,如果不能在前述的①任何一式上存在,数就显然不会具有那样的性质,那些性质是主张数为独立事物的人替它按上去的。
又,是否每个单位都得之于“平衡了的大与小”抑或一个由“小”来另一个由“大”来?
(甲)若为后一式,每一事物既不尽备所有的要素,其中各单位也不会没有差异;因为其中有一为大,另一为与大相对反的小。在“本3”中的诸单位又如何安排?其中有一畸另单位。但也许正是这缘由,他们以“本一”为诸奇数中的中间单位。
②(乙)但两单位若都
①见于1080a15—b36。
②参看第尔士辑“先苏格拉底”
(第三版)卷一,346,17—22,又270,18。
346
。
43。形而上学
是平衡了的大与小,那作为整个一件事物的2又怎样由大与小组成?
或是如何与其单位相异?
又,单位是先于2;因为这消失,2也随之消失。
于是1将是一个意式的意式,这在2以前先生成。那么,这从何生成?不是从“未定之2”
,因为“未定之2”的作用是在使“倍”。
再者,数必须是无限或是有限(因为这些思想家认为数能独立存在,并就应该在两老中确定其一①)。清楚地,这不能是无限;因为无限数是既非奇数又非偶数,而列数生成非奇必偶,非偶必奇。其一法,当1加之于一个偶数时,则生成一个奇数;另一法,当1被2连乘时,就生成2的倍增数;又一法当2的倍增数,被奇数所乘时就产生其它的偶数。
②
又,假如每一意式是某些事物的意式,而数为意式,无限数本身将是某事物(或是可感觉事物或是其它事物)的一个意式。
可是这个本身就不合理,而照他们的理论也未必可能,至少是照他们的意式安排应为不可能。
但,数若为有限,则其极限在那里?关于这个,不仅该
①如果数是独立存在的,其实现必须是一个无限或是一个有限数。亚氏自己的主张是数只能潜在地为无限,其所实现必为一有限数。
②柏拉图“巴门尼德”
14A以1与2为奇偶起点由1与2相加得3;用此三数,(1)以偶乘偶,(2)奇乘奇,(3)奇乘偶,(4)偶乘奇,四法制作列数。
(3)
(4)两法实际相同。由(1)与(3)
(4)可得一切偶数:2的倍增数即乘方数2,4,8,16。其中所缺偶数由2×3=6,2×5=10,4×3=12,2×7=14……来递补。但(2)法不能得一切奇数。素数如5,7等均非乘法所能制成。柏拉图以加法制成第一个素数3。实际其它素数均须由偶数加一制成。
347
形而上学。
543。
举出事实,还得说明理由。倘照有些人①所说数以10为终,则通式之为数,也就仅止于10了;例如3为“人本”
,又以何数为“马本”?
作为事物之本的若干数列遂终于10。
这必须是在这限度内的一个数,因为只有这些数才是本体,才是意式。可是这些数目很快就用尽了;动物形式的种类着实超过这些数目。同时,这是清楚的,如依此而以意式之“3”为“人本”
,其它诸3亦当如兹(在同数内的诸)
亦当相似)
,②这样将是无限数的人众;假如每个3均为一个意式,则诸3将悉成“人本”
,如其不然,诸3也得是一般人众。又,假如小数为大数的一部分(姑以同数内的诸单位为可相通)
,于是倘以“本4”为“马”或“白”或其它任何事物的意式,则若人为2时,便当以人为马的一个部分。这也是悖解的,可有10的意式,而不得有11与以下各数的意式。又,某些事物碰巧是,或也实际是没有通式的;何以这些没有通式?我们认为通式不是事物之原因。
又,说是由1至10的数系较之本10更应作为实物与通式,这也悖解。本10是作为整体而生成的,至于1至10的数系,则未见其作为整体而生成。
他们却先假定了1至10为一个完整的数系。至少,他们曾在10限以内创造了好些衍生物——例如虚空,比例,奇数以及类此的其它各项。他们将动静,善恶一类事物列为肇始原理,而将其
①以十为数之终其旨出于毕达哥拉斯学派,此处所指包括柏拉图在内(参看“物学”206b32)
,大约斯泮雪浦亦从此旨。
②此括弧内支句费解。罗宾(Robin)解为在“意式4”内之3,与涵于意式5内之4中的3亦相似,逐级类推亦相似(参看罗宾:“柏拉图意式论在亚里士多德以后之发展”352页)。
348
。
643。形而上学
它事物归之于数。
①所以他们把奇性合之于1;因为如以3作奇数之本性则5又何如?
②
又,对于空间量体及类此的事物,他们都用有定限的数来说明;例如,第一,不可分线,③其次2,以及其它;这些都进到10而终止。
④
再者,假如数能独立自存,人们可以请问那一数目为先,——1或3或2?
假如数是组合的,自当以1为先于,但普遍性与形式若为先于,那么列数便当为先于;因为诸1只是列数的物质材料,而数才是为之作用的形式。在某一涵义上,直角为先于锐角,因为直角有定限,而锐角犹未定,故于定义上为先;在另一涵义上,则锐角为先于,因为锐角是直角部分,直角被区分则成诸锐角。作为物质,则锐角元素与单位为先于;但于形式与由定义所昭示的本体而论,则直角与“物质和形式结合起来的整体”应为先于;因为综合实体虽在生成过程上为后,却是较接近于形式与定义。那么,1
①“虚空”由未定之2衍生,可参看乌弗拉斯托“哲学”(312,18—313,3)。
“动”亦出于“未定之2”见本书卷A章九,卷K章九。
“静”自然由1衍生,可不烦参证。此处所举各例中实际仅“比例”才真正是数的衍生物。叙里安诺诠论比例三式1∶2∶3为算术比例;1∶2∶4为几何比例;2∶3∶6为音乐比例。
此三式所举数目皆在10以内。
②数论学派以1为具有奇性,3,5等为奇数而无奇性,得其奇性于1;如7之为奇数,并不因3因5以为奇,惟因1以取其奇性。
③参看卷A,92a2,又卷N,章三。
④参看卷N,1090b21—24,数论以1合于点(即不可分线)
,2合于线,3合于面,4合于立体,而1,2,3,4则合成10,为数之终,一切空间量体尽涵于中。
349
形而上学。
743。
安得为起点?他们答复说,因为1是不可区分的;但普遍性与个别性或元素均不可区分。
而作为起点则有“始于定义”
与“在时间上为始”的分别。那么,1在那一方面为起点?上曾言及,直角可被认为先于锐角,锐角也可说是先于直角,那么直角与锐角均可当作1看。
他们使1在两方面都成为起点。
但这是不可能的。因为普遍性是由形式或本体以成一,而元素则由物质以成一,或由部分以成一。两者(数与单位)各可为一——实际上两个单位①均各潜在(至少,照他们所说不同的数由不同种类的单位组成,亦就是说数不是一堆,而各自一个整体,这就该是这样)
,而不是完全的实现。他们所以陷入错误的原因是他们同时由数理立场又由普遍定义出发,进行研究,这样(甲)从数理出发,他们以1为点,当作第一原理;因为单位是一个没有位置的点。(他们象旁的人②也曾做过的那样,把最小的部分按装成为事物。)于是“1”成为数的物质要素,同时也就先于2;而在2当作一个整数,当作一个形式时,则1又为后于。然而,(乙)因为他们正在探索普遍性,遂又把“1”表现为列数形式涵义的一个部分。但这些特性不能在同时属之同一事物。
假如“本1”
必须是无定位的单元(因为这除了是原理外,并不异于它1)
,2是可区分的,但1则不可区分,1之于“本1”较之于2将更为相切近,但,1如切近于“本1”
,“本1”
①这里亚氏以2为例,其中两个1,在2实现为一个整数时,均各转成为潜在。
②指原子(不可分物)论派。
350
。
843。形而上学
之于1也将较之于2为相切近;那么2中的各单位必然先于2。然而他们否认这个;至少,他们曾说是2先创生。
又,假如“本2”是一个整体,“本3”也是一个整体,两者合成为2〈两个整体〉。于是,这个“2”所从产生的那两者又当是何物呢?
章 九因为列数间不是接触而是串联,例如在2与3中的各单位之间什么都没有,人们可以请问这些于本1是否也如此紧跟着,紧跟着本1的应是2抑或2中的某一个单位。
①
在后于数的各级事物——线,面,体——也会遭遇相似的迷难。有些人②由“大与小”的各品种构制这些,例如由长短制线,由阔狭制面,由深浅制体;那些都是大与小的各个品种。这类几何事物之肇始原理〈第一原理〉,相当于列数之肇始原理,各家所说不同。在这些问题上面,常见有许多不切实的寓言与理当引起的矛盾。
(一)
若非阔狭也成为长短,几何各级事物便将互相分离。
(但阔狭若合于长短,面将合于线,而体合于面;③还有角度与图形以及类此诸事物又怎样能解释?)又(